
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

99

Chapter 6 CHAPTER 6

More Dialplan Concepts

For a list of all the ways technology has failed to
improve the quality of life, please press three.

—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, and you’re hoping there’s more to
come. Fear not; there is more—much more. If you don’t have the last chapter sorted
out yet, please go back and give it another read. We’re building on what we’ve cov-
ered so far, and we need you to be comfortable with the material, as we’re about to
get into more advanced topics.

Expressions and Variable Manipulation
Before we dive further into dialplans, we need to introduce you to a few tricks that
will greatly add to the power you can exercise with your dialplan. These constructs
add incredible intelligence to your dialplan, by enabling it to make decisions based
on all sorts of different criteria. Put on your thinking cap, and let’s get started.

Basic Expressions
Expressions are combinations of variables, operators, and values that you put
together to get a result. An expression can test values, alter strings, or perform math-
ematical calculations. Let’s say we have a variable called COUNT. In plain English, two
expressions using that variable might be “COUNT plus 1” and “COUNT divided by 2.”
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square
bracket and end with a closing square bracket, as shown below:

$[expression]

,ch06.21282 Page 99 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 6: More Dialplan Concepts

Thus, we would write the above two examples like this:

$[${COUNT} + 1]
$[${COUNT} / 2]

When Asterisk encounters an expression in a dialplan, it replaces the entire expres-
sion with the resulting value. It is important to note that this takes place after vari-
able substitution. To demonstrate, let’s look at the following code:*

exten => 321,1,Set(COUNT=3)
exten => 321,2,Set(NEWCOUNT=$[${COUNT} + 1])
exten => 321,3,SayNumber(${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one application—Set()—is involved, but three things
actually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expres-
sion effectively becomes this:

exten => 321,2,Set(NEWCOUNT=$[3 + 1])

2. Next, Asterisk evaluates the expression, adding 1 to 3, and replaces it with its
computed value of 4:

exten => 321,2,Set(NEWCOUNT=4)

3. Finally, the value 4 is assigned to the NEWCOUNT variable by the Set() application.

The third priority simply invokes the SayNumber() application, which speaks the cur-
rent value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

Operators
When you create an Asterisk dialplan, you’re really writing code in a specialized
scripting language. This means that the Asterisk dialplan—like any programming
language—recognizes symbols called operators that allow you to manipulate vari-
ables. Let’s look at the types of operators that are available in Asterisk:

Boolean operators
These operators evaluate the “truth” of a statement. In computing terms, that
essentially refers to whether the statement is something or nothing (non-zero or
zero, true or false, on or off, and so on). The Boolean operators are:

* Remember that when you reference a variable, you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around the variable name.

,ch06.21282 Page 100 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Variable Manipulation | 101

expr1 | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns the
evaluation of expr2.

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expres-
sions are true (i.e., neither expression evaluates to an empty string or zero).
Otherwise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2
These operators return the results of an integer comparison if both argu-
ments are integers; otherwise, they return the results of a string comparison.
The result of each comparison is 1 if the specified relation is true, or 0 if the
relation is false. (If you are doing string comparisons, they will be done in a
manner that’s consistent with the current locale settings of your operating
system.)

Mathematical operators
Want to perform a calculation? You’ll want one of these:

expr1 {+, -} expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator
You can also use the regular expression operator in Asterisk:

expr1 : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.* The regular expression is anchored to the beginning of the
string with an implicit ^.†

If the match succeeds and the pattern contains at least one regular expres-
sion subexpression—\(...\)—the string corresponding to \1 is returned;
otherwise, the matching operator returns the number of characters matched.
If the match fails and the pattern contains a regular expression subexpres-
sion, the null string is returned; otherwise, 0 is returned.

* For more on regular expressions, grab a copy of the ultimate reference, Jeffrey Friedl’s Mastering Regular
Expressions (O’Reilly; http://www.oreilly.com/catalog/regex2/) or visit http://www.regular-expressions.info.

† If you don’t know what a ^ has to do with regular expressions, you simply must obtain a copy of Mastering
Regular Expressions. It will change your life!

,ch06.21282 Page 101 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 6: More Dialplan Concepts

The Asterisk parser is quite simple, so it requires that you put at least one space
between the operator and any other values. Consequently, the following may not
work as expected:

exten => 123,1,Set(TEST=$[2+1])

This would assign the variable TEST the string “2+1”, instead of the value 3. Instead,
put spaces around the operator, like this:

exten => 234,1,Set(TEST=$[2 + 1])

To concatenate text onto the beginning or end of a variable, simply place them
together in an expression, like this:

exten => 234,1,Set(NEWTEST=$[blah${TEST}])

Dialplan Functions
Dialplan functions are not a new concept. In Asterisk 1.2, they should be used where
possible. Many applications that perform the same operation as a corresponding
function will eventually be removed in favor of the function. Functions allow you to
add more power to your expressions—you can think of them as being similar to
operators, but more advanced. For example, dialplan functions allow you to calcu-
late string lengths, dates and times, MD5 checksums, and so on, all from within a
dialplan expression.

Syntax
Dialplan functions have the following basic syntax:

FUNCTION_NAME(argument)

Much like with variables, you reference a function’s name as above, but you refer-
ence a function’s value with the addition of a dollar sign, an opening curly brace, and
a closing curly brace:

${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:

${FUNCTION_NAME(${FUNCTION_NAME(argument)})}
 ^ ^ ^ ^ ^^^^
 1 2 3 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the above example, we have labeled
the opening parentheses and curly braces with numbers and their corresponding
closing counterparts with the same numbers.

,ch06.21282 Page 102 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conditional Branching | 103

Examples of Dialplan Functions
Functions are often used in conjunction with the Set() application to either get or
set the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument. Let’s calculate the string length
of a variable and read back the length to the caller:

exten => 123,1,Set(TEST=example)
exten => 123,2,SayNumber(${LEN(${TEST})})

The above example would evaluate the string example as having seven characters,
assign the number of characters to the variable length, and then speak the number to
the user with the SayNumber() application.

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one
of three arguments: absolute, digit, and response. Their corresponding applications
are AbsoluteTimeout(), DigitTimeout(), and ResponseTimeout(). To set the digit tim-
eout with the TIMEOUT() function, we could use the Set() application, like so:

exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value to
a variable, we assign a value to a function without the use of the ${ } encapsulation.

A complete list of available functions can be found by typing show functions at the
Asterisk command-line interface.

Conditional Branching
Now that you’ve learned a bit about expressions and functions, it’s time to put them
to use. By using expressions and functions, you can add even more advanced logic to
your dialplan. To allow your dialplan to make decisions, you’ll use conditional
branching. Let’s take a closer look.

The GotoIf() Application
The key to conditional branching is the GotoIf() application. GotoIf() evaluates an
expression and sends the caller to a specific destination based on whether the expres-
sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:

GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to the first destination. If the
expression evaluates to false, the caller is sent to the second destination. So, what is
true and what is false? An empty string and the number 0 evaluate as false. Anything
else evaluates as true.

,ch06.21282 Page 103 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 6: More Dialplan Concepts

The destinations can each be one of the following:

• A priority within the same extension, such as 10

• An extension and a priority within the same context, such as 123,10

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Either of the destinations may be omitted, but not both. If the omitted destination is
to be followed, Asterisk simply goes on to the next priority in the current extension.

Let’s use GotoIf() in an example:

exten => 345,1,Set(TEST=1)
exten => 345,2,GotoIf($[{$TEST} = 1]?10:20)
exten => 345,10,Playback(weasels-eaten-phonesys)
exten => 345,20,Playback(office-iguanas)

By changing the value assigned to TEST in the first line, you should be able to have
your Asterisk server play a different greeting.

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 10 and then hang up:

exten => 123,1,Set(COUNT=10)
exten => 123,2,GotoIf($[${COUNT} > 0]?:10)
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} - 1])
exten => 123,5,Goto(2)
exten => 123,10,Hangup()

Let’s analyze this example. In the first priority, we set the variable COUNT to 10. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority.
(Don’t forget that if we omit a destination in the GotoIf() application, control goes
to the next priority.) From there we speak the number, subtract 1 from COUNT, and go
back to priority two. If COUNT is less than or equal to 0, control goes to priority 10,
and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-girl-
friend logic. If the Caller ID number of the incoming call matches the phone number
of the recipient’s ex-girlfriend, Asterisk gives a different message than it ordinarily
would to any other caller. While somewhat simple and primitive, it’s a good exam-
ple for learning about conditional branching within the Asterisk dialplan.

This example uses a channel variable called CALLERIDNUM, which is automatically set
by Asterisk to the Caller ID number of the inbound call. Let’s assume for the sake of
this example that the victim’s phone number is 885-555-1212:

exten => 123,1,GotoIf($[${CALLERIDNUM} = 8885551212]?20:10)
exten => 123,10,Dial(Zap/4)
exten => 123,20,Playback(abandon-all-hope)
exten => 123,21,Hangup()

,ch06.21282 Page 104 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conditional Branching | 105

In priority one, we call the GotoIf() application. It tells Asterisk to go to priority 20
if the Caller ID number matches 8885551212, and otherwise to go to priority 10. If the
Caller ID number matches, control of the call goes to priority 20, which plays back
an uninspiring message to the undesired caller. Otherwise, the call attempts to dial
the recipient on channel Zap/4.

Time-Based Conditional Branching with GotoIfTime()
Another way to use conditional branches in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do,
GotoIfTime() looks at the current system time and uses that to decide whether or not
to follow a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting
before and after normal business hours.

The syntax for the GotoIfTime() application looks like this:

GotoIfTime(times,days_of_week,days_of_month,months?label)

In short, GotoIfTime() sends the call to the specified label if the current date and
time match the criteria specified by times, days_of_week, days_of_month, and months.
Let’s look at each argument in more detail:

times
This is a list of one or more time ranges, in 24-hour format. As an example, 9:00
a.m. through 5:00 p.m. would be specified as 09:00-17:00. The day starts at 0:00
and ends at 23:59.

days_of_week
This is a list of one or more days of the week. The days should be specified as
mon, tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be
expressed as mon-fri. Tuesday and Thursday would be expressed as tue,thu.

days_of_month
This is a list of the numerical days of the month. Days are specified by the num-
bers 1 through 31. The 7th through the 12th would be expressed as 7-12, and the
15th and 30th of the month would be written as 15,30.

months
This is a list of one or more months of the year. The months should be written as
jan, feb, mar, apr, and so on.

If you wish to match on all possible values for any of these arguments, simply put an
* in for that argument.

The label argument can be any of the following:

• A priority within the same extension, such as 10

• An extension and a priority within the same context, such as 123,10

,ch06.21282 Page 105 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 6: More Dialplan Concepts

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The follow-
ing example would match from 9:00 a.m. to 5:59 p.m., on Monday through Friday,
on any day of the month, in any month of the year:

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s
extension in the context named open. If the call is made outside of the specified
times, it will be sent to the next priority of the current extension. This allows you to
easily branch on multiple times, as shown in the next example (note that you should
always put your most specific time matches before the least specific ones):

; If it's any hour of the day, on any day of the week,
; during the fourth day of the month, in the month of of July,
; we're closed
exten => s,1,GotoIfTime(*,*,4,jul?open,s,1)

; During business hours, send calls to the open context
exten => s,2,GotoIfTime(09:00-17:59|mon-fri|*|*?open,s,1)
exten => s,3,GotoIfTime(09:00-11:59|sat|*|*?open,s,1)

; Otherwise, we're closed
exten => s,4,Goto(closed,s,1)

Voicemail
One of the most popular (or, actually, unpopular) features of any modern telephone
system is voicemail. Naturally, Asterisk has a very flexible voicemail system. Some of
the features of Asterisk’s voicemail system include:

• Unlimited password-protected voicemail boxes, each containing mailbox fold-
ers for organizing voicemail

• Different greetings for busy and unavailable states

• Default and custom greetings

• The ability to associate phones with more than one mailbox and mailboxes with
more than one phone

• Email notification of voicemail, with the voicemail optionally attached as a
sound file*

• Voicemail forwarding and broadcasts

* No, you really don’t have to pay for this; and yes, it really does work.

,ch06.21282 Page 106 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Voicemail | 107

• Message-waiting indicator (flashing light or stuttered dial tone) on many types of
phones

• Company directory of employees, based on voicemail boxes

And that’s just the tip of the iceberg! In this section, we’ll introduce you to the fun-
damentals of a typical voicemail setup.

The voicemail configuration is defined in the configuration file called voicemail.conf.
This file contains an assortment of settings that you can use to customize the voice-
mail system to your needs. Covering all the available options in voicemail.conf would
be beyond the scope of this chapter, but the sample configuration file is well docu-
mented and quite easy to follow. For now, look near the bottom of the file, where
voicemail contexts and voicemail boxes are defined.

Just as dialplan contexts keep different parts of your dialplan separate, voicemail
contexts allow you to define different sets of mailboxes that are separate from one
another. This allows you to host voicemail for several different companies or offices
on the same server. Voicemail contexts are defined in the same way as dialplan con-
texts, with square brackets surrounding the name of the context. For our examples,
we’ll be using the [default] voicemail context.

Creating Mailboxes
Inside each voicemail context, we define different mailboxes. The syntax for defin-
ing a mailbox is:

mailbox => password,name[,email[,pager_email[,options]]]

Let’s explain what each part of the mailbox definition does:

mailbox
This is the mailbox number. It usually corresponds with the extension number
of the associated set.

password
This is the numeric password the mailbox owner will use to access her voice-
mail. If the user changes her password, the system will update this field in the
voicemail.conf file.

name
This is the name of the mailbox owner. The company directory uses the text in
this field to allow callers to spell usernames.

email
This is the email address of the mailbox owner. Asterisk can send voicemail noti-
fications (including the voicemail message itself) to the specified email box.

,ch06.21282 Page 107 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: More Dialplan Concepts

pager_email
This is the email address of the mailbox owner’s pager or cell phone. Asterisk
can send a short voicemail notification message to the specified email address.

options
This field is a list of options that sets the mailbox owner’s time zone and over-
rides the global voicemail settings. There are nine valid options: attach,
serveremail, tz, saycid, review, operator, callback, dialout, and exitcontext.
These options should be in option=value pairs, separated by the pipe character
(|). The tz option sets the user’s time zone to a time zone previously defined in
the [zonemessages] section of voicemail.conf, and the other eight options over-
ride the global voicemail settings with the same names.

A typical mailbox definition might look something like this:

101 => 1234,Joe Public,jpublic@somedomain.com,jpublic@pagergateway.net,tz=central|attach=yes

Continuing with our dialplan from the last chapter, let’s set up voicemail boxes for
John and Jane. We’ll give John a password of 1234 and Jane a password of 4444
(remember, these go in voicemail.conf, not extensions.conf):

[default]
101 => 1234,John Doe,john@asteriskdocs.org,jdoe@pagergateway.tld
102 => 4444,Jane Doe,jane@asteriskdocs.org,jane@pagergateway.tld

Adding Voicemail to the Dialplan
Now that we’ve created mailboxes for Jane and John, let’s allow callers to leave mes-
sages for them if they don’t answer the phone. To do this, we’ll use the VoiceMail()
application.

The VoiceMail() application sends the caller to the specified mailbox, so that he can
leave a message. The mailbox should be specified as mailbox@context, where context
is the name of the voicemail context. The mailbox number can also be prefixed by
the letter b or the letter u. If the letter b is used, the caller will hear the mailbox
owner’s busy message. If the letter u is used, the caller will hear the mailbox owner’s
unavailable message (if one exists).

Let’s use this in our sample dialplan. Previously, we had a line like this in our
[internal] context, which allowed us to call John:

exten => 101,1,Dial(${JOHN},,r)

Now, let’s change it so that if John is busy (on another call), it’ll send us to his voice-
mail, where we’ll hear his busy message (don’t forget that the Dial() application
sends the caller to priority n+101 if the dialed line is busy):

exten => 101,1,Dial(${JOHN},,r)
exten => 101,102,VoiceMail(b101@default)

,ch06.21282 Page 108 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Voicemail | 109

Next, let’s add an unavailable message that the caller will be played if John doesn’t
answer the phone within 10 seconds. Remember, the second argument to the Dial()
application is a timeout. If the call is not answered before the timeout expires, the
call is sent to the next priority. Let’s add a 10-second timeout, and a priority to send
the caller to voicemail if John doesn’t answer in time:

exten => 101,1,Dial(${JOHN},10,r)
exten => 101,2,VoiceMail(u101@default)
exten => 101,102,VoiceMail(b101@default)

If we add these two new priorities and a timeout argument to the Dial() applica-
tion, callers will get John’s voicemail (with the appropriate greeting) if John is either
busy or unavailable. A slight problem remains, however, in that John has no way of
retrieving his messages. Let’s remedy that.

Accessing Voicemail
Users can retrieve their voicemail messages, change their voicemail options, and
record their voicemail greetings by using the VoiceMailMain() application. In its typi-
cal form, VoiceMailMain() is called without any arguments. Let’s add extension 500
to the [internal] context of our dialplan so that internal users can dial it to access
their voicemail messages:

exten => 500,1,VoiceMailMain()

Creating a Dial-by-Name Directory
One last feature of the Asterisk voicemail system we should cover is the dial-by-name
directory. This is created with the Directory() application. This application uses the
names defined in the mailboxes in voicemail.conf to present the caller with a dial-by-
name directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read
the names, the optional dialplan context in which to dial the user, and an option
string (which is also optional). By default, Directory() searches for the user by last
name, but passing the f option forces it to search by first name instead. Let’s add two
dial-by-name directories to the [incoming] context of our sample dialplan, so that
callers can search by either first or last name:

exten => 8,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming)

If callers press 8, they’ll get a directory by first name. If they dial 9, they’ll get the
directory by last name.

,ch06.21282 Page 109 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: More Dialplan Concepts

Macros
Macros are a very useful construct designed to avoid repetition in the dialplan. They
also help in making changes to the dialplan. To illustrate this point, let’s look at our
sample dialplan again. If you remember the changes we made for voicemail, we
ended up with the following for John’s extension:

exten => 101,1,Dial(${JOHN},10,r)
exten => 101,2,VoiceMail(u101@default)
exten => 101,102,VoiceMail(b101@default)

Now imagine you have a hundred users on your Asterisk system—setting up the
extensions would involve a lot of copying and pasting. Then imagine that you need
to make a change to the way your extensions work. That would involve a lot of edit-
ing, and you’d be almost certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all
of the phone extensions refer to that macro. All you need to change is the macro, and
everything in the dialplan that references that macro will change as well.

If you’re familiar with computer programming, you’ll recognize that
macros are similar to subroutines in many modern programming lan-
guages. If you’re not familiar with computer programming, don’t
worry—we’ll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let’s move right along.

Defining Macros
For our first macro, let’s take the dialplan logic we used above to set up voicemail for
John and turn it into a macro. Then we’ll use the macro to give John and Jane (and
the rest of their coworkers) the same functionality.

Macro definitions look a lot like contexts. (In fact, you could argue that they really
are small, limited contexts.) You define a macro by placing macro- and the name of
your macro in square brackets, like this:

[macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts.
The commands within the macro are built pretty nearly identically to anything else
in the dialplan—the only limiting factor is that macros use only the s extension. Let’s
add our voicemail logic to the macro, changing the extension to s as we go:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10,r)
exten => s,2,VoiceMail(u101@default)
exten => s,102,VoiceMail(b101@default)

,ch06.21282 Page 110 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Macros | 111

That’s a start, but it’s not perfect, as it’s still specific to John and his mailbox num-
ber. To make the macro generic so that it will work not only for John but also for all
his coworkers, we’ll take advantage of another property of macros: arguments. But
first, let’s see how we call macros in our dialplan.

Calling Macros from the Dialplan
To use a macro in our dialplan, we use the Macro() application. This application
calls the specified macro and passes it any arguments. For example, to call our voice-
mail macro from our dialplan, we can do the following:

exten => 101,1,Macro(voicemail)

The Macro() application also defines several special variables for our use. They
include:

${MACRO_CONTEXT}

The original context in which the macro was called.

${MACRO_EXTEN}

The original extension in which the macro was called.

${MACRO_PRIORITY}

The original priority in which the macro was called.

${ARGn}

The nth argument passed to the macro. For example, the first argument would
be ${ARG1}, the second ${ARG2}, and so on.

As we explained earlier, the way we initially defined our macro was hard-coded for
John, instead of being generic. Let’s change our macro to use ${MACRO_EXTEN} instead
of 101 for the mailbox number. That way, if we call the macro from extension 101
the voicemail messages will go to mailbox 101, if we call the macro from extension
102 messages will go to mailbox 102, and so on:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10,r)
exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)
exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

Using Arguments in Macros
Okay, now we’re getting closer to having the macro the way we want it, but we still
have one thing left to change—we need to pass in the channel to dial, as it’s cur-
rently still hard-coded for ${JOHN} (remember that we defined the variable JOHN as the

,ch06.21282 Page 111 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: More Dialplan Concepts

channel to call when we want to reach John). Let’s pass in the channel as an argu-
ment, and then our first macro will be complete:

[macro-voicemail]
exten => s,1,Dial(${ARG1},10,r)
exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)
exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

Now that our macro is done, we can use it in our dialplan. Here’s how we can call
our macro to provide voicemail to John, Jane, and Jack:

exten => 101,1,Macro(voicemail,${JOHN})
exten => 102,1,Macro(voicemail,${JANE})
exten => 103,1,Macro(voicemail,${JACK})

With 50 or more users, this dialplan will still look neat and organized—we’ll simply
have one line per user, referencing a macro that can be as complicated as required.
We could even have a few different macros for various user types, such as
executives, courtesy_phones, call_center_agents, analog_sets, sales_department,
and so on.

A more advanced version of the macro might look something like this:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
exten => s,2,Goto(s-${DIALSTATUS},1)
exten => s-NOANSWER,1,Voicemail(u${MACRO_EXTEN})
exten => s-NOANSWER,2,Goto(incoming,s,1)
exten => s-BUSY,1,Voicemail(b${MACRO_EXTEN})
exten => s-BUSY,2,Goto(incoming,s,1)
exten => _s-.,1,Goto(s-NOANSWER,1)

This macro depends on a nice side effect of the Dial() application: when you use the
Dial() application, it sets the DIALSTATUS variable to indicate whether the call was
successful or not. In this case, we’re handling the NOANSWER and BUSY cases, and treat-
ing all other result codes as a NOANSWER.

Using the Asterisk Database (AstDB)
Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values, called the Asterisk database
(AstDB). The AstDB provides a simple way to store data for use within your dialplan.

For those of you with experience using relational databases such as
PostgreSQL or MySQL, the Asterisk database is not a traditional rela-
tional database. It is a Berkeley DB Version 1 database. There are sev-
eral ways to store data from Asterisk in a relational database, but this
book will not delve into them.

,ch06.21282 Page 112 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Using the Asterisk Database (AstDB) | 113

The Asterisk database stores its data in groupings called families, with values identi-
fied by keys. Within a family, a key may be used only once. For example, if we had a
family called test, we could store only one value with a key called count. Each stored
value must be associated with a family.

Storing Data in the AstDB
To store a new value in the Asterisk database, we use the Set() application,* but
instead of using it to set a channel variable, we use it to set an AstDB variable. For
example, to assign the count key in the test family the value of 1:

exten => 456,1,Set(${DB(test/count)=1})

If a key named count already exists in the test family, its value will be overwritten
with the new value. You can also store values from the Asterisk command line, by
running the command database put family key value. For our example, you would
type database put test count 1.

Retrieving Data from the AstDB
To retrieve a value from the Asterisk database and assign it to a variable, we use the
Set() application again. Let’s retrieve the value of count (again, from the test fam-
ily), assign it to a variable called COUNT, and then speak the value to the caller:

exten => 456,1,Set(DB(test/count)=1)
exten => 456,2,Set(COUNT=${DB(test/count)})
exten => 456,3,SayNumber(${COUNT})

You may also check the value of a given key from the Asterisk command line by run-
ning the command database get family key. To view the entire contents of the
AstDB, use the database show command.

Deleting Data from the AstDB
There are two ways to delete data from the Asterisk database. To delete a key, use
the DBdel() application. It takes the family and key as arguments, like this:

exten => 457,1,DBdel(test/count)

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument: the name of the key family to
delete. To delete the entire test family, do the following:

exten => 457,1,DBdeltree(test)

* Previous versions of Asterisk had applications called DBput() and DBget() that were used to set values in and
retrieve values from the AstDB. If you’re using an old version of Asterisk, you’ll want to use them instead.

,ch06.21282 Page 113 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: More Dialplan Concepts

To delete keys and key families from the AstDB via the command-line interface, use
the database del key and database deltree family commands, respectively.

Using the AstDB in the Dialplan
There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll show two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (meaning that it survives
system reboots). In the second example, we’ll use the LookupBlacklist() application
to evaluate whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count
key) from the database and assign it to a variable named COUNT. If the key doesn’t
exist, DBget() will send us to priority n+101, where we will set the value to 1. The
next priority will send us back to priority 1. This will happen the very first time we
dial this extension:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Next, we’ll say the current value of COUNT, and then increment COUNT:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,Set(COUNT=$[${COUNT} + 1])
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Now that we’ve incremented COUNT, let’s put the new value back into the database.
Remember that storing a value for an existing key overwrites the previous value:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,Set(COUNT=$[${COUNT} + 1])
exten => 678,4,Set(DB(test/count)=${COUNT})
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Finally, we’ll loop back to the first priority. This way, the application will continue
counting:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,SetVar(COUNT=$[${COUNT} + 1]
exten => 678,4,Set(DB(test/count)=${COUNT})
exten => 678,5,Goto(1)
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

,ch06.21282 Page 114 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Handy Asterisk Features | 115

Go ahead and try this example. Listen to it count for a while, and then hang up. When
you dial this extension again, it should continue counting from where it left off. The
value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we’ll create dialplan logic around the LookupBlacklist() appli-
cation, which checks to see if the current Caller ID number exists in the blacklist.
(The blacklist is simply a family called blacklist in the AstDB.) If LookupBlacklist()
finds the number in the blacklist, it sends the call to priority n+101. Otherwise, the
call continues on with the next priority:

exten => 124,1,LookupBlacklist()
exten => 124,2,Dial(${JOHN})
exten => 124,102,Playback(privacy-you-are-blacklisted)
exten => 124,103,Playback(vm-goodbye)
exten => 124,104,Hangup()

To add a number to the blacklist, run the database put blacklist number 1 com-
mand from the Asterisk command-line interface.

Handy Asterisk Features
Now that we’ve gone over some more of the basics, let’s look at a few popular func-
tions that have been incorporated into Asterisk.

Zapateller()
Zapateller() is a simple Asterisk application that plays a special information tone at
the beginning of a call, which causes auto-dialers (usually used by telemarketers) to
think the line has been disconnected. Not only will they hang up, but their systems
will flag your number as out of service, which could help you avoid all kinds of tele-
marketing calls. To use this functionality within your dialplan, simply call the
Zapateller() application.

We’ll also use the optional nocallerid option so that the tone will be played only
when there is no Caller ID information on the incoming call. For example, you might
use Zapateller() in the s extension of your [incoming] context, like this:

[incomimg]
exten => s,1,Zapateller(nocallerid)
exten => s,2,Playback(enter-ext-of-person)

Call Parking
Another handy feature is called “call parking.” Call parking allows you to place a call
on hold in a “parking lot,” so it can be taken off hold from another extension.
Parameters for call parking (such as the extensions to use, the number of spaces, and

,ch06.21282 Page 115 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: More Dialplan Concepts

so on) are all controlled within the features.conf configuration file. The [general]
section of the features.conf file contains four settings related to call parking:

parkext
This is the parking lot extension. Transfer a call to this extension, and the sys-
tem will tell you which parking position the call is in. By default, the parking
extension is 700.

parkpos
This option defines the number of parking slots. For example, setting it to 701-
720 creates 20 parking positions, numbered 701 through 720.

context
This is the name of the parking context. To be able to park calls, you must
include this context.

parkingtime
If set, this option controls how long (in seconds) a call can stay in the parking
lot. If the call isn’t picked up within the specified time, the extension that parked
the call will be called back.

You must restart Asterisk after editing features.conf, as the file is read
only on startup. Running the reload command will not cause the
features.conf file to be read.

Also note that because the user needs to be able to transfer the calls to the parking
lot extension, you should make sure you’re using the t and/or T options to the Dial()
application.

So, let’s create a simple dialplan to show off call parking:

[incoming]
include => parkedcalls

exten=103,1,Dial(SIP/Bob,,tT)
exten=104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials
extension 103, to reach Bob. After a while, Bob transfers the call to extension 700,
which tells him that the call from Alice has been parked in position 701. Bob then
dials Charlie at extension 104, and tells him that Alice is at extension 701. Charlie
then dials extension 701, and begins to talk to Alice. This is a simple and effective
way of allowing callers to be transferred between users.

,ch06.21282 Page 116 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Handy Asterisk Features | 117

Conferencing with MeetMe()
Last but not least, let’s cover setting up an audio conference bridge with the MeetMe()
application.* This application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

• The ability to create password-protected conferences

• Conference administration (mute conference, lock conference, kick participants)

• The option of muting all but one participant (useful for company announce-
ments, broadcasts, etc.)

• Static or dynamic conference creation

Let’s walk through setting up a basic conference room. The configuration options for
the MeetMe conferencing system are found in meetme.conf. Inside the configuration file,
you define conference rooms and optional numeric passwords. (If a password is defined
here, it will be required to enter all conferences using that room.) For our example, let’s
set up a conference room at extension 600. First, we’ll set up the conference room in
meetme.conf. We’ll call it 600, and we won’t assign a password at this time:

[rooms]
conf => 600

Now that the configuration file is complete, we’ll need to restart Asterisk so that it
can re-read the meetme.conf file. Next, we’ll add support for the conference room to
our dialplan with the MeetMe() application. MeetMe() takes three arguments: the
name of the conference room (as defined in meetme.conf), a set of options, and the
password the user must enter to join this conference. Let’s set up a simple confer-
ence using room 600, the i option (which announces when people enter and exit the
conference), and a password of 54321:

exten => 600,1,MeetMe(600,i,54321)

That’s all there is to it! When callers enter extension 600, they will be prompted for
the password. If they correctly enter 54321, they will be added to the conference. See
Appendix B for a list of all the options supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application
counts the number of users in a particular conference room. It takes up to two argu-
ments: the conference room in which to count the number of participants, and
optionally a variable name to assign the count to. If the variable name is not passed
as the second argument, the count is read to the caller:

exten => 601,1,Playback(conf-thereare)
exten => 601,2,MeetMeCount(600)
exten => 601,3,Playback(conf-peopleinconf)

* In the world of legacy PBXs, this type of functionality is very expensive. Either you have to pay big bucks for
a dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

,ch06.21282 Page 117 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: More Dialplan Concepts

If you pass a variable as the second argument to MeetMeCount(), the count is assigned
to the variable and playback of the count is skipped. You might use this to limit the
number of participants, like this:

; limit the conference room to 10 participants
exten => 600,1,MeetMeCount(600,CONFCOUNT)
exten => 600,2,GotoIf($[${CONFCOUNT} <= 10]?3:100)
exten => 600,3,MeetMe(600,i,54321)
exten => 600,100,Playback(conf-full)

Isn’t Asterisk fun?

Conclusion
In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you the seeds from which you can explore the
creation of your own dialplans. As with the previous chapter, we invite you to go
back and re-read any sections that require clarification.

The following chapters take us away from Asterisk for a bit, in order to talk about
some of the technologies that all telephone systems use. We’ll be referring to Aster-
isk a lot, but much of what we want to discuss are things that are common to many
telecom systems.

,ch06.21282 Page 118 Wednesday, August 31, 2005 4:56 PM

