
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

77

Chapter 5 CHAPTER 5

Dialplan Basics

Everything should be made as simple as possible,
but not simpler.

—Albert Einstein (1879–1955)

The dialplan is truly the heart of any Asterisk system, as it defines how Asterisk han-
dles inbound and outbound calls. In a nutshell, it consists of a list of instructions or
steps that Asterisk will follow. Unlike traditional phone systems, Asterisk’s dialplan
is fully customizable. To successfully set up your own Asterisk system, you will need
to understand the dialplan.

If writing a dialplan sounds overwhelming, don’t worry. This chapter explains how
dialplans work in a step-by-step manner and teaches the skills necessary to create
your own. The examples have been designed to build upon one another, so feel free
to go back and re-read a section if something doesn’t quite make sense. Please also
note that this chapter is by no means an exhaustive survey of all the possible things
dialplans can do; our aim is to cover just the fundamentals. We’ll cover more
advanced dialplan topics in later chapters.

Dialplan Syntax
The Asterisk dialplan is specified in the configuration file named extensions.conf.

The extensions.conf file usually resides in the /etc/asterisk/ directory,
but its location may vary depending on how you installed Asterisk.
Other common locations for this file include /usr/local/asterisk/etc/ and
/opt/asterisk/etc/.

The dialplan is made up of four main parts: contexts, extensions, priorities, and
applications. In the next few sections, we’ll cover each of these parts and explain
how they work together to create a dialplan. After explaining the role each of these

,ch05.20886 Page 77 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 5: Dialplan Basics

elements plays in the dialplan, we will step you though the process of creating a
basic, functioning dialplan.

Contexts
Dialplans are broken into sections called contexts. Contexts are named groups of
extensions. Simply put, they keep different parts of the dialplan from interacting
with one another. An extension that is defined in one context is completely isolated
from extensions in any another context, unless interaction is specifically allowed.
(We’ll cover how to allow interaction between contexts near the end of the chapter.)

As a simple example, let’s imagine we have two companies sharing an Asterisk
server. If we place each company’s voice menu in its own context, they are effec-
tively separated from each other. This allows us to independently define what hap-
pens when, say, extension 0 is dialed: people pressing 0 at Company A’s voice menu
will get Company A’s receptionist, and callers pressing 0 at Company B’s voice menu
will get Company B’s receptionist. (This example assumes, of course, that we’ve told
Asterisk to transfer the calls to the receptionists when callers press 0.)

Contexts are denoted by placing the name of the context inside square brackets ([]).
The name can be made up of the letters A through Z (upper- and lowercase), the
numbers 0 through 9, and the hyphen and underscore.* For example, a context for
incoming calls looks like this:

[incoming]

All of the instructions placed after a context definition are part of that context, until
the next context is defined. At the beginning of the dialplan, there are two special

Sample Configuration Files
If you installed the sample configuration files when you installed Asterisk, you will most
likely have an existing extensions.conf file. Instead of starting with the sample file, we sug-
gest that you build your extensions.conf file from scratch. This will be very beneficial, as
it will give you a better understanding of dialplan concepts and fundamentals.

That being said, the sample extensions.conf file remains a fantastic resource, full of
examples and ideas that you can use after you’ve learned the basic concepts. We sug-
gest you rename the sample file to something like extensions.conf.sample. That way,
you can refer to it in the future. You can also find the sample configuration files in the
/configs/ directory of the Asterisk source.

* Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in
your context names—you won’t like the result!

,ch05.20886 Page 78 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dialplan Syntax | 79

contexts named [general] and [globals]. We will discuss the [globals] context later
in this chapter; for now it’s just important to know that these two contexts are spe-
cial.

One of the most important uses of contexts is to enforce security. By using contexts
correctly, you can give certain callers access to features (such as long-distance call-
ing) that aren’t made available to others. If you don’t design your dialplan carefully,
you may inadvertently allow others to fraudulently use your system. Please keep this
in mind as you build your Asterisk system.

The Asterisk source contains a very important file named SECURITY,
which outlines several steps you should take to keep your Asterisk sys-
tem secure. It is vitally important that you read and understand this
file. If you ignore the security precautions outlined there, you may end
up allowing anyone and everyone to make long-distance or toll calls at
your expense!

If you don’t take the security of your Asterisk system seriously, you
may end up paying—literally! Please take the time and effort to secure
your system from toll fraud.

Extensions
Within each context, we define one or more extensions. An extension is an instruc-
tion that Asterisk will follow, triggered by an incoming call or by digits being dialed
on a channel. Extensions specify what happens to calls as they make their way
through the dialplan. Although extensions can be used to specify phone extensions
in the traditional sense (i.e., please call John at extension 153), they can be used for
much more in Asterisk.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name of the extension. When dealing with telephone sys-
tems, we tend to think of extensions as the numbers you would dial to make another
phone ring. In Asterisk, you get a whole lot more—for example, extension names
can be any combination of numbers and letters. Over the course of this chapter and
the next, we’ll use both numeric and alphanumeric extensions.

Assigning names to extensions may seem like a revolutionary concept,
but when you realize that many Voice-over-IP transports support (or
even actively encourage) dialing by name or email address instead of
by number, it makes perfect sense. This is one of the features that
make Asterisk so flexible and powerful.

,ch05.20886 Page 79 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 5: Dialplan Basics

A complete extension is composed of three components:

• The name (or number) of the extension

• The priority (each extension can include multiple steps; the step number is
called the “priority”)

• The application (or command) that performs some action on the call

These three components are separated by commas, like this:

exten => name,priority,application()

Here’s a simple example of what a real extension might look like:

exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is
Answer(). Now, let’s move ahead and explain priorities and applications.

Priorities
Each extension can have multiple steps, called priorities. Each priority is numbered
sequentially, starting with 1. (Actually, there is one exception to this rule, as dis-
cussed in the sidebar “Unnumbered Priorities.”) Each priority executes one specific
application. As an example, the following extension would answer the phone (in pri-
ority number 1), and then hang it up (in priority number 2):

exten => 123,1,Answer()
exten => 123,2,Hangup()

You must make sure that your priorities start at 1 and are numbered
consecutively. If you skip a priority, Asterisk will not continue past it.
If you find that Asterisk is not following all the priorities in a given
extension, you may want to make sure you haven’t skipped or mis-
numbered a priority.

Don’t worry if you don’t understand what Answer() and Hangup() are—we’ll cover
them shortly. The key point to remember here is that for a particular extension,
Asterisk follows the priorities in numerical order.

Applications
Applications are the workhorses of the dialplan. Each application performs a spe-
cific action on the current channel, such as playing a sound, accepting touch-tone
input, or hanging up the call. In the previous example, you were introduced to two
simple applications: Answer() and Hangup(). You’ll learn more about how these
work momentarily.

,ch05.20886 Page 80 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Simple Dialplan | 81

Some applications, such as Answer() and Hangup(), need no other instructions to do
their jobs. Other applications require additional information. These pieces of infor-
mation, called arguments, can be passed on to the applications to affect how they
perform their actions. To pass arguments to an application, place them between the
parentheses that follow the application name, separated by commas.

Occasionally, you may also see the pipe character (|) being used as a
separator between arguments, instead of a comma. Feel free to use
whichever you prefer. For the examples in this book, however, we’ll be
using the comma to separate arguments to an application.

As we build our first dialplan in the next section, you’ll learn to use applications (and
their associated arguments) to your advantage.

A Simple Dialplan
Now we’re ready to create our first dialplan. We’ll start with a very simple example.
We will design this dialplan so that as a call comes in, Asterisk will answer the call,
play a sound file, and then hang up the call. We’ll use this simple example to point
out the most important dialplan fundamentals.

Unnumbered Priorities
There’s nothing like telling you that priorities have to be numbered sequentially, and
then contradicting ourselves. Oh well, it needs to be done.

Version 1.2 of Asterisk adds a new twist to priority numbering. It introduces the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority named
n, it takes the number of the previous priority and adds 1. This makes it easier to make
changes to your dialplan, as you don’t have to keep renumbering all your steps. For
example, your dialplan might look something like this:

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Version 1.2 also allows you to assign text labels to priorities. To assign a text label to
a priority, simply add the label inside parentheses after the priority, like this:

exten => 123,n(label),do something

In the next chapter, we’ll cover how to jump between different priorities based on dial-
plan logic.

,ch05.20886 Page 81 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 5: Dialplan Basics

For the examples in this chapter to work correctly, we’re assuming that at least one Zap
channel has been created and configured (as described in the previous chapter), and that
all incoming calls are sent to the [incoming] context. If you’re using other types of chan-
nels, you may need to adjust these examples to fit your particular circumstances.

The s Extension
Before we get started with our dialplan, we ought to explain a special extension
called s. When calls enter a context without a specific destination extension (for
example, a ringing FXO line), they are handled automatically by the s extension.
(The s stands for “start,” as most calls start in the s extension.) Since this is exactly
what we need for our dialplan, let’s begin to fill in the pieces. We will be performing
three actions on the call (answer it, play a sound file, and hang it up), so we need to
create an extension called s with three priorities. We’ll place the three priorities
inside [incoming], as all incoming calls should start in this context:

[incoming]
exten => s,1,application()
exten => s,2,application()
exten => s,3,application()

Now all we need to do is fill in the applications, and we’ve created our first dialplan.

The Answer(), Playback(), and Hangup() Applications
If we’re going to answer the call, play a sound file, and then hang up, we’d better
learn how to do just that. The Answer() application is used to answer a channel that
is ringing. This does the initial setup for the channel that receives the incoming call.
(A few applications don’t require that you answer the channel first, but properly
answering the channel before performing any other actions is a very good habit.) As
we mentioned earlier, Answer() takes no arguments.

The Playback() application is used for playing a previously recorded sound file over
a channel. When using the Playback() application, input from the user is simply
ignored.

Asterisk comes with many professionally recorded sound files, which
should be found in the default sounds directory (usually /var/lib/aster-
isk/sounds/). They have been recorded in the GSM format, so they
have a .gsm file extension. We’ll be using these files in many of our
examples. Several of the files in our examples come from the asterisk-
sounds module, so please take the time to install it (see Chapter 3).

To use Playback(), specify a filename (without a file extension) as the argument. For
example, Playback(filename) would play the sound file called filename.gsm,

,ch05.20886 Page 82 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Simple Dialplan | 83

assuming it was located in the default sounds directory. Note that you can include
the full path to the file if you want, like this:

Playback(/home/john/sounds/filename)

This example would play filename.gsm from the /home/john/sounds/ directory. You
can also use relative paths from the Asterisk sounds directory:

Playback(custom/filename)

This example would play filename.gsm from the custom/ subdirectory of the default
sounds directory. Note that if the specified directory contains more than one file
with that filename but with different file extensions, Asterisk automatically plays the
best file.*

The Hangup() application does exactly as its name implies: it hangs up the active chan-
nel. The caller will receive an indication that the call has been hung up. You will use this
application at the end of a context when you want to end the current call, to ensure that
callers don’t continue on in the dialplan. This application takes no arguments.

Our First Dialplan
Now that we have created our extension, given it three different priorities, and
learned about the applications we are going to use, let’s put together all the pieces to
create our first dialplan. As is typical in many technology books (especially com-
puter programming books), our first example will be called “Hello World!”

In the first priority of our extension, we’ll answer the call. In the second, we’ll play a
sound file named hello-world.gsm, and in the third we’ll hang up the call. Here’s
what the dialplan looks like:

[incoming]
exten => s,1,Answer()
exten => s,2,Playback(hello-world)
exten => s,3,Hangup()

If you have a channel or two configured, go ahead and try it out! Simply make a new
extensions.conf file with this short dialplan. (If it doesn’t work, check the Asterisk
console for error messages, and make sure your channels are configured to send
inbound calls to the [incoming] context.)

Even though this example is very short and simple, it emphasizes the core concepts
of contexts, extensions, priorities, and applications. Now that we’ve covered these

* Asterisk selects the best file based on translation cost; that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
show translation at the Asterisk command-line interface. We’ll cover more about the different audio formats
(known as codecs) in Chapter 8.

,ch05.20886 Page 83 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 5: Dialplan Basics

basic concepts, let’s build upon our example. After all, a phone system that simply
plays a sound file and then hangs up the channel isn’t that useful!

Adding Logic to the Dialplan
The dialplan we just built was static—it always performs the same actions on every
call. Now we’ll start adding some logic to our dialplan so that it will perform differ-
ent actions based on input from the user. We’ll start by introducing a few more
applications.

The Background() and Goto() Applications
One important key to building interactive Asterisk systems is the Background() appli-
cation. Like Playback(), it plays a recorded sound file. Unlike Playback(), however,
when the caller presses a key (or series of keys) on her telephone keypad, it inter-
rupts the playback and goes to the extension that corresponds with the pressed
digit(s). If a caller presses 5, for example, Asterisk will stop playing the sound file and
send control of the call to the first priority of extension 5.

The most common use of the Background() application is to create voice menus
(often called auto-attendants or phone trees). Many companies use voice menus to
direct callers to the proper extensions, thus relieving their receptionists from having
to answer every single call.

Background() has the same syntax as Playback():

exten => 123,1,Background(hello-world)

Another useful application is Goto(). As its name implies, it is used to send the call
to another context, extension, and priority. The Goto() application makes it easy to
programmatically move a call between different parts of the dialplan. The syntax for
the Goto() application calls for us to pass the destination context, extension, and pri-
ority as arguments to the application, like this:

exten => 123,1,Goto(context,extension,priority)

In our next example, we’ll use the Background() and Goto() applications to create a
slightly more complex dialplan, allowing the caller to interact with the system by
pressing digits on the keypad. Let’s begin by using Background() to accept input
from the caller:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)

In this example, we’ll play the sample sound file named enter-ext-of-person.gsm.
While it’s not the perfect fit for an auto-attendant greeting, it will certainly work for

,ch05.20886 Page 84 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 85

this example. Now let’s add two extensions that will be triggered by the caller enter-
ing either 1 or 2 at the prompt:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)
exten => 2,1,Playback(digits/2)

Before going on, let’s review what we’ve done so far. When users call into our dial-
plan, they will hear a greeting saying, “Please enter the number you wish to call.” If
they press 1, they will hear the number one, and if they press 2, they will hear the
number two. While that’s a good start, let’s embellish it a little. We’ll use the Goto()
application to make the dialplan repeat the greeting after playing back the number:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)
exten => 1,2,Goto(incoming,s,1)
exten => 2,1,Playback(digits/2)
exten => 2,2,Goto(incoming,s,1)

These two new lines (highlighted in bold) will send the call control back to the s
extension after playing back the selected number.

If you look up the details of the Goto() application, you’ll find that
you can actually pass either one, two, or three arguments to the appli-
cation. If you pass a single argument, it’ll assume it’s the destination
priority in the current extension. If you pass two, it’ll treat them as the
extension and priority to go to in the current context.

In this example, we’ve passed all three arguments for the sake of clar-
ity, but passing just the extension and priority would have had the
same effect.

Handling Invalid Entries and Timeouts
Now that our first voice menu is fairly complete, let’s add some additional special
extensions. First, we need an extension for invalid entries, so that when a caller
presses an invalid entry (e.g., pressing 3 in the above example), the call is sent to the
i extension. Second, we need an extension to handle situations when the caller
doesn’t give input in time (the default timeout is 10 seconds). Calls will be sent to
the t extension if the caller takes too long to press a digit after Background() has fin-
ished playing the sound file. Here is what our dialplan will look like after we’ve
added these two extensions:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)

,ch05.20886 Page 85 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 5: Dialplan Basics

exten => 1,2,Goto(incoming,s,1)
exten => 2,1,Playback(digits/2)
exten => 2,2,Goto(incoming,s,1)
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

Using the i and t extensions makes our dialplan a little more robust and user-
friendly. That being said, it is still quite limited, because outside callers have no way
of connecting to a live person. To do that, we’ll need to learn about another applica-
tion, called Dial().

Using the Dial() Application
One of Asterisk’s most valuable features is its ability to connect different callers to
each other. This is especially useful when callers are using different methods of com-
munication. For example, caller A might be communicating over the standard ana-
log telephone network, while user B might be sitting in a café halfway around the
world and speaking on an IP telephone. Luckily, Asterisk takes most of the hard
work out of connecting and translating between disparate networks. All you have to
do is learn how to use the Dial() application.

The syntax of the Dial() application is a little more complex than that of the other
applications we’ve used so far, but don’t let that scare you off. Dial() takes up to four
arguments. The first is the destination you’re attempting to call, which is made up of a
technology (or transport) across which to make the call, a forward slash, and the
remote resource (usually a channel name or number). For example, let’s assume that
we want to call a Zap channel named Zap/1, which is an FXS channel with an analog
phone plugged into it. The technology is “Zap,” and the resource is “1.” Similarly, a
call to a SIP device might have a destination of SIP/1234, and a call to an IAX device
might have a destination of IAX/fred. If we want Asterisk to ring the Zap/1 channel
when extension 123 is reached in the dialplan, we’d add the following extension:

exten => 123,1,Dial(Zap/1)

When this extension is executed, Asterisk will ring the phone connected to channel
Zap/1. If that phone is answered, Asterisk will bridge the inbound call with the Zap/1
channel. We can also dial multiple channels at the same time, by concatenating the
destinations together with an ampersand (&), like this:

exten => 123,1,Dial(Zap/1&Zap/2&Zap/3)

The Dial() application will bridge the inbound call with whichever destination
channel is answered first.

The second argument to the Dial() application is a timeout, specified in seconds. If
a timeout is given, Dial() will attempt to call the destination(s) for that number of

,ch05.20886 Page 86 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 87

seconds before giving up and moving on to the next priority in the extension. If no
timeout is specified, Dial() will continue to dial the called channel(s) until someone
answers or the caller hangs up. Let’s add a timeout of 10 seconds to our extension:

exten => 123,1,Dial(Zap/1,10)

If the call is answered before the timeout, the channels are bridged and the dialplan
is done. If the destination simply does not answer, Dial() goes on to the next prior-
ity in the extension. If, however, the destination channel is busy, Dial() will go to
priority n+101, if it exists (where n is the priority where the Dial() application was
called). This allows us to handle unanswered calls differently from calls whose desti-
nations were busy.

Let’s put what we’ve learned so far into another example:

exten => 123,1,Dial(Zap/1,10)
exten => 123,2,Playback(vm-nobodyavail)
exten => 123,3,Hangup()
exten => 123,102,Playback(tt-allbusy)
exten => 123,103,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call
goes unanswered, or the tt-allbusy.gsm sound file if the Zap/1 channel is currently
busy.

The third argument to Dial() is an option string. It may contain one or more charac-
ters that modify the behavior of the Dial() application. While the list of possible
options is too long to cover here, the most popular option is the letter r. If you place
the letter r as the third argument, the calling party will hear a ringing tone while the
destination channel is being notified of an incoming call.

It should be noted that the r option isn’t always required to indicate ringing, as
Asterisk will automatically generate a ringing tone when it is attempting to establish
a channel. However, you can use the r option to force Asterisk to indicate ringing
even when no connection is being attempted. To add the r option to our last exam-
ple, we simply change the first line:

exten => 123,1,Dial(Zap/1,10,r)
exten => 123,2,Playback(vm-nobodyavail)
exten => 123,3,Hangup()
exten => 123,102,Playback(tt-allbusy)
exten => 123,103,Hangup()

Since the extensions numbered 1 and 2 in our dialplan are somewhat useless now
that we know how to use the Dial() application, let’s replace them with extensions
101 and 102, which will allow outside callers to reach John and Jane:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)

,ch05.20886 Page 87 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 5: Dialplan Basics

exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

The fourth and final argument to the Dial() application is a URL. If the destination
channel supports receiving a URL at the time of the call, the specified URL will be
sent (for example, if you have an IP telephone that supports receiving a URL, it will
appear on the phone’s display; likewise, if you’re using a soft phone, the URL might
pop up on your computer screen). This argument is very rarely used.

If you are making outbound calls on an FXO Zap channel, you can use the following
syntax to dial a number on that channel:

exten => 123,1,Dial(Zap/4/5551212)

This example would dial the number 555-1212 on the Zap/4 channel. For other chan-
nel types, such as SIP and IAX, simply put the destination as the resource, as shown
in these two lines:

exten => 123,1,Dial(SIP/1234)
exten => 124,1,Dial(IAX2/john@asteriskdocs.org)

Note that any of these arguments may be left blank. For example, if you want to spec-
ify an option but not a timeout, simply leave the timeout argument blank, like this:

exten => 123,1,Dial(Zap/1,,r)

Adding a Context for Internal Calls
In our examples thus far we have limited ourselves to a single context, but it is prob-
ably fair to assume that almost all Asterisk installations will have more than one con-
text in their dialplans. As we mentioned at the beginning of this chapter, one
important function of contexts is to separate privileges (such as making long-dis-
tance calls or calling certain extensions) for different classes of callers. In our next
example, we’ll add to our dialplan by creating two internal phone extensions, and
we’ll set up the ability for these two extensions to call each other. To accomplish
this, we’ll create a new context called [internal].

,ch05.20886 Page 88 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 89

As in previous examples, we’ve assumed that an FXS Zap channel
(Zap/1, in this case) has already been configured, and that your zapata.
conf file is configured so that any calls originated by Zap/1 begin in the
[internal] context. For a few examples at the end of the chapter, we’ll
also assume that an FXO Zap channel has been configured as Zap/4,
with calls coming in on this channel being sent to the [incoming] con-
text. This channel will be used for outbound calling.

We’ve also assumed you have at least one SIP channel (named SIP/
jane) that is configured to originate in the [internal] context. We’ve
done this to introduce you to using other types of channels.

If you don’t have hardware for the channels listed above (such as Zap/
4), or if you’re using hardware with different channel names (e.g., not
SIP/jane), don’t worry—you can change the examples to match your
particular system configuration.

Our dialplan now looks like this:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(Zap/1,,r)
exten => 102,1,Dial(SIP/jane,,r)

In this example, we have added two new extensions to the [internal] context. This
way, the person using channel Zap/1 can pick up the phone and dial the person at
channel SIP/jane by dialing 102. By that same token, the phone registered as SIP/
jane can dial Zap/1 by dialing 101.

We’ve arbitrarily decided to use extensions 101 and 102 for our examples, but feel
free to use whatever numbering convention you wish for your extensions. You
should also be aware that you’re not limited to three-digit extensions—you can use
as few or as many digits as you like. (Well, almost. Extensions must be shorter than

,ch05.20886 Page 89 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: Dialplan Basics

80 characters long, and you shouldn’t use single-character extensions for your own
use, as they’re reserved.) Don’t forget that you can use names as well, like so:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(Zap/1,,r)
exten => john,1,Dial(Zap/1,,r)
exten => 102,1,Dial(SIP/jane,,r)
exten => jane,1,Dial(SIP/jane,,r)

It certainly wouldn’t hurt to add named extensions if you think your users might be
dialed via a VoIP transport that supports names.

Now that our internal callers can call each other, we’re well on our way toward hav-
ing a complete dialplan. Next, we’ll see how we can make our dialplan more scal-
able and easier to modify in the future.

Using Variables
Variables can be used in an Asterisk dialplan to help reduce typing, add clarity, or
add additional logic to a dialplan. If you have some computer programming experi-
ence, you probably already understand what a variable is. If not, don’t worry; we’ll
explain what variables are and how they are used.

You can think of a variable as a container that can hold one value at a time. So, for
example, we might create a variable called JOHN and assign it the value of Zap/1. This
way, when we’re writing our dialplan, we can refer to John’s channel by name,
instead of remembering that John is using Zap/1. To assign a value to a variable, sim-
ply type the name of the variable, an equals sign, and the value, like this:

JOHN=Zap/1

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable, such as JOHN. If, on the other hand, you want to refer-
ence its value, you must type a dollar sign, an opening curly brace, the name of the

,ch05.20886 Page 90 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 91

variable, and a closing curly brace. Here’s how we’d reference the variable inside the
Dial() application:

exten => 555,1,Dial(${JOHN},,r)

In our dialplan, whenever we write ${JOHN}, Asterisk will automatically replace it
with whatever value has been assigned to the variable named JOHN.

Note that variable names don’t have to be capitalized, but we’re doing
so in this book for readability’s sake.

There are three types of variables we can use in our dialplan: global variables, chan-
nel variables, and environment variables. Let’s take a moment to look at each type.

Global variables

As their name implies, global variables apply to all extensions in all contexts. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan
and several hundred references to the Zap/1 channel. Now imagine you had to go
through your dialplan and change all those references to Zap/2. It would be a long
and error-prone process, to say the least.

On the other hand, if you had defined a global variable with the value Zap/1 at the
beginning of your dialplan and then referenced that instead, you would only have to
change one line.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. They can also be defined programmatically, using the
SetGlobalVar() application. Here is how both methods look inside of a dialplan:

[globals]
JOHN=Zap/1

[internal]
exten => 123,1,SetGlobalVar(JOHN=Zap/1)

Channel variables

A channel variable is a variable (such as the Caller*ID number) that is associated only
with a particular call. Unlike global variables, channel variables are defined only for
the duration of the current call and are available only to the channel participating in
that call.

There are many predefined channel variables available for use within the dialplan,
which are explained in the README.variables file in the doc subdirectory of the
Asterisk source. Channel variables are set via the Set() application:

exten => 123,1,Set(MAGICNUMBER=42)

,ch05.20886 Page 91 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: Dialplan Basics

We’ll use several of these channel variables in the next chapter.

Environment variables

Environment variables are a way of accessing Unix environment variables from
within Asterisk. These are referenced in the form of ${ENV(var)}, where var is the
Unix environment variable you wish to reference.

Adding variables to our dialplan

Now that we’ve learned about variables, let’s put them to work in our dialplan. We’ll
add variables for two people, John and Jane:

[globals]
JOHN=Zap/1
JANE=SIP/jane

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(${JOHN},10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(${JANE},10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(${JOHN},,r)
exten => 102,1,Dial(${JANE},,r)

Pattern Matching
Often, it would be tedious to add every possible extension to a dialplan. This is espe-
cially the case for outbound calls. Can you imagine a dialplan with an extension for
every possible number you could dial? Luckily, Asterisk has just the thing for situa-
tions like this: pattern matching to allow you to use one section of code for many dif-
ferent extensions.

,ch05.20886 Page 92 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 93

Pattern-matching syntax

When using pattern matching, we use different letters and symbols to represent the pos-
sible digits we want to match. Patterns always start with an underscore (_). This tells
Asterisk that we’re matching on a pattern, and not on an extension name. (This means,
of course, that you should never start your extension names with an underscore.)

If you forget the underscore on the front of your pattern, Asterisk will
think it’s just a named extension and won’t do any pattern matching.

After the underscore, you can use one or more of the following characters:

X
Matches any digit from 0 to 9.

Z
Matches any digit from 1 to 9.

N
Matches any digit from 2 to 9.

[15-7]
Matches any digit or range of digits specified. In this case, matches a 1, 5, 6, or
7.

. (period)
Wildcard match; matches one or more characters.

If you’re not careful, wildcard matches can make your dialplans do
things you’re not expecting. You should only use the wildcard match
in a pattern after you’ve matched as many other digits as possible. For
example, the following pattern match should probably never be used:

_.

In fact, Asterisk will warn you if you try to use it. Instead, use this one,
if possible:

_X.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => _NXX,1,Playback(auth-thankyou)

In this example, the pattern would match any 3-digit extension from 200 through
999 (the N matches any digit between 2 and 9, and each X matches a digit between 0
and 9). That is to say, if a caller dialed any 3-digit extension between 200 and 999 in
this context, he would hear the sound file auth-thankyou.gsm.

,ch05.20886 Page 93 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: Dialplan Basics

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one. Say you had defined the following two patterns, and a caller dialed 888-555-1212:

exten => _555XXXX,1,Playback(digits/1)
exten => _55512XX,1,Playback(digits/2)

In this case the second extension would be selected, because it is more specific.

Pattern-matching examples

Before we go on, let’s look at a few more pattern-matching examples. In each one,
see if you can tell what the pattern would match before reading the explanation.
We’ll start with an easy one:

_NXXXXXX

Got it? This pattern would match any seven-digit number, as long as the first digit
was two or higher. According to the North American Numbering Plan, this pattern
would match any local number.

Let’s try another:

_1NXXNXXXXXX

The NANP and Toll Fraud
The North American Number Plan (NANP) is a shared telephone numbering scheme
used by 19 countries in North America and the Caribbean.

In the United States and Canada, telecom regulations are similar (and sensible) enough
that you can place a long-distance call to most numbers in country code 1 and expect
to pay a reasonable toll. What many people don’t realize, however, is that 19 countries,
many of which have very different telecom regulations, share the NANP. (More infor-
mation can be found at http://www.nanpa.com.)

Many toll-fraud schemes trick naive North Americans into calling shockingly expen-
sive per-minute toll numbers in a Caribbean country—the callers believe that since
they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their standard
national long-distance rate for the call. Since the country in question may have regula-
tions that allow for this form of extortion, the caller is ultimately held responsible for
the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809,
for example) and remove the restrictions only on an as-needed basis. Please take extra
caution to make sure users can’t abuse your phone system!

,ch05.20886 Page 94 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 95

This one is slightly more difficult. This would match the number 1, followed by an
area code between 200 and 999, then any 7-digit number. In the NANP, you would
use this pattern to match any long-distance number.

Now for an even trickier example:
_011.

If that one left you scratching your head, look at it again. Did you notice the period
on the end? This pattern matches any number that starts with 011 and has at least
one more digit. In the NANP, this indicates an international phone number.*

Using the ${EXTEN} channel variable
We know what you’re thinking… You’re sitting there asking yourself, “So what hap-
pens if I want to use pattern matching, but I need to know which digits were actu-
ally dialed?” Luckily, Asterisk has just the answer. Whenever you dial an extension,
Asterisk sets the ${EXTEN} channel variable to the digits that were dialed. We can use
an application called SayDigits() to test it out:

exten => _XXX,1,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit
extension you dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits
off the front of the extension. This is accomplished by using the syntax ${EXTEN:x},
where x is the number of digits you’d like to remove. For example, if the value of
EXTEN is 95551212, ${EXTEN:1} equals 5551212. Let’s take a look at another example:

exten => _XXX,1,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would read back only the last two dig-
its of the dialed extension.

If x is negative, SayDigits() gives you the last x digits of the dialed extension. In this
next example, SayDigits() will read back only the last digit of the dialed extension:

exten => _XXX,1,SayDigits(${EXTEN:-1))

Enabling Outbound Dialing
Now that we’ve introduced pattern matching, we can go about the process of allow-
ing users to make outbound calls. The first thing we’ll do is add a variable to the
[globals] context to define which channel will be used for outbound calls:

[globals]
JOHN=Zap/1
JANE=SIP/jane
OUTBOUNDTRUNK=Zap/4

* If you find it peculiar that we’ve chosen patterns that are used to dial outbound numbers in the NANP,
you’re on to something! We’ll be using these patterns in the next section to add outbound dialing capabilities
to our dialplan.

,ch05.20886 Page 95 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: Dialplan Basics

Next, we will add contexts to our dialplan for outbound dialing.

You may be asking yourself at this point, “Why do we need separate contexts for
outbound calls?” This is so that we can regulate and control who has permission to
make outbound calls, and which types of outbound calls they are allowed to make.

First, let’s make a context for local calls. To be consistent with most traditional
phone switches, we’ll put a 9 on the front of our patterns, so that users have to dial 9
before calling an outside number:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

Note that dialing 9 doesn’t actually give you an outside line, unlike
with many traditional PBX systems. Once you dial 9 on an FXS line,
the dial tone will stop. If you’d like the dial tone to continue even after
dialing 9, add the following line (right after your context definition):

ignorepat => 9

This directive tells Asterisk to continue to provide a dial tone, even
after the caller has dialed the indicated pattern.

Let’s review what we’ve just done. We’ve added a global variable called
OUTBOUNDTRUNK, which will control which channel to use for outbound calls. We’ve
also added a context for local outbound calls. In priority 1, we take the dialed exten-
sion, strip off the 9 with the ${EXTEN:1} syntax, and then attempt to dial that num-
ber on the channel signified by the variable OUTBOUNDTRUNK. If the call is successful,
the caller is bridged with the outbound channel. If the call is unsuccessful (because
either the channel is busy or the number can’t be dialed for some reason), the
Congestion() application is called, which plays a “fast busy signal” (congestion tone)
to let the caller know that the call was unsuccessful.

Before we go any farther, let’s make sure our dialplan allows outbound emergency
numbers:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

Again, we’re assuming for the sake of these examples that we’re inside the United
States or Canada. If you’re outside of this area, please replace 911 with the emer-
gency services number in your particular location. This is something you never want
to forget to put in your dialplan!

,ch05.20886 Page 96 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 97

Next, let’s add a context for long-distance calls:

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion()
exten => _91NXXNXXXXXX,102,Congestion()

Now that we have these two new contexts, how do we allow internal users to take
advantage of them? We need a way for contexts to be able to use other contexts.

Includes
Asterisk enables us to use a context within another context via the include directive.
This is used to grant access to different sections of the dialplan. We’ll use the include
functionality to allow users in our [internal] context the ability to make outbound
phone calls. But first, let’s cover the syntax.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

When we include other contexts within our current context, we have to be mindful
of the order in which we including them. Asterisk will first try to match the exten-
sion in the current context. If unsuccessful, it will then try the first included context,
and then continue to the other included contexts in the order in which they were
included.

As it sits, our current dialplan has two contexts for outbound calls, but there’s no
way for people in the [internal] context to use them. Let’s remedy that by includ-
ing the two outbound contexts in the [internal] context, like this:

[globals]
JOHN=Zap/1
JANE=SIP/jane
OUTBOUNDTRUNK=Zap/4

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(${JOHN},10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(${JANE},10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)

,ch05.20886 Page 97 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: Dialplan Basics

exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
include => outbound-local
include => outbound-long-distance

exten => 101,1,Dial(${JOHN},,r)
exten => 102,1,Dial(${JANE},,r)

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion()
exten => _91NXXNXXXXXX,102,Congestion()

These two include statements make it possible for callers in the [internal] context
to make outbound calls. We should also note that for security’s sake you should
always make sure that your [inbound] context never allows outbound dialing. (If by
chance it did, people could dial into your system, and then make outbound toll calls
that would be charged to you!)

Conclusion
And there we have it—a basic but functional dialplan. It’s not exactly fully featured,
but we’ve covered all of the fundamentals. In the following chapters, we’ll continue
to add features to this foundation.

If parts of this dialplan don’t make sense, you may want to go back and re-read a sec-
tion or two before continuing on to the next chapter. It’s imperative that you under-
stand these principles and how to apply them, or the following chapters will only
confuse you more. And we don’t want you to be confused!

,ch05.20886 Page 98 Wednesday, August 31, 2005 4:56 PM

