é ,ch04.20428 Page 58 Wednesday, August 31, 2005 4:55 PM

*

CHAPTER 4
Initial Configuration of Asterisk

Perseverance is the hard work you do after you get
tired of doing the hard work you already did.

—Newt Gingrich

The purpose of this chapter is to guide the user through the configuration of four chan-
nels: a Foreign eXchange Office (FXO) channel, a Foreign eXchange Station (FXS)
channel, a Session Initiation Protocol (SIP) channel, and an Inter-Asterisk eXchange
protocol (IAX)" channel. The purpose is not to give an exhaustive survey of all channel
types or topologies, but rather to provide a base platform on which to build your tele-
communications system. Further scenarios and channel configuration details can be
found in Appendix D. We start by exploring the basic configuration of analog inter-
faces such as FXS and FXO ports with the use of a Digium Dev-Lite kit. We’ll then
configure two Voice over Internet Protocol (VoIP) interfaces: a local SIP channel con-
nected to a soft phone, and a connection to Free World Dialup via IAX.

Once you’ve worked through this chapter, you will have a basic system consisting of
many useful interfaces, and you will be ready to learn more about the extensions.conf
file (discussed further in Chapter 5), which contains the instructions Asterisk needs
to build the dialplan.

What Do I Really Need?

The asterisk character (*) is used as a wildcard in many different applications. It is
the perfect name for this PBX for many reasons, one of which is the enormous num-
ber of interface types to which Asterisk can connect. These include:

* Analog interfaces, such as your telephone line and analog telephones

* Digital circuits, such as T-1 and E-1 lines

* VoIP protocols such as SIP and IAX

* Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say “IAX”
or “IAX2,” it is expected that you are talking about Version 2.

58

%

ﬁ

*ﬁ%

é ,ch04.20428 Page 59 Wednesday, August 31, 2005 4:55 PM

*

Asterisk doesn’t need any specialized hardware—not even a sound card. Channel
cards that connect Asterisk to analog phones or phone lines are available, but not
essential. You can connect to Asterisk using the soft phones that are available for
Windows, Linux, and other operating systems without using a special hardware
interface. You can also use any IP phone that supports either SIP or IAX2. On the
other side, if you don’t connect directly to an analog phone line from your central
office, you can route your calls over the Internet to a telephony service provider.

Working with Interface Configuration Files

In this chapter, we’re finally going to “get our hands dirty” and start building an
Asterisk configuration. For the first few sections on FXO and FXS channels, we’ll
assume that you have the Digium Dev-Lite kit with one FXO and one FXS interface,
which allows you to connect to an analog phone line (FXO) and to an analog phone
(FXS). Note that this hardware interface isn’t necessary; if you want to build an IP-
only configuration, you can skip to the section on configuring SIP.

The configuration we do in this chapter won’t be particularly useful on its own, but
it will be a kernel to build on. We’re going to touch on the following files:

zaptel.conf
Here, we’ll do low-level configuration for the hardware interface. We’ll set up
one FXO channel and one FXS channel.

zapata.conf
In this file, we’ll configure Asterisk’s interface to the hardware.

extensions.conf
The dialplans we create will be extremely primitive, but they will prove that the
system is working.

sip.conf
This is where we’ll configure the SIP protocol.

iax.conf
This is where we’ll configure incoming and outgoing IAX channels.

In the following sections, you will be editing several configuration files. You’ll have
to reload these files for your changes to take effect. After you edit the zaptel.conf file,
you will need to reload the configuration for the hardware with /sbin/ztcfg -vv (you
may omit the —vv if you don’t need verbose output). Changes made in zapata.conf
will require a reload from the Asterisk console; however, changing signaling meth-
ods requires a restart. You will need to perform a reload chan_iax2.so and a reload
chan_sip.so after editing the iax.conf and sip.conf files, respectively.

Working with Interface Configuration Files | 59

%

ﬁ

*@%

é ,ch04.20428 Page 60 Wednesday, August 31, 2005 4:55 PM

*

FXO and FXS Channels

The difference between an FXO channel and an FXS channel is simply which end of
the connection provides the dial tone. An FXO port does not generate a dial tone; it
accepts one. A common example is the dial tone provided by your phone company.
An FXS port provides both the dial tone and ringing voltage to alert the station user
of an inbound call. Both interfaces provide bidirectional communication (i.e., com-
munication that is transmitted and received in both directions simultaneously).

If your Asterisk server has a compatible FXO port, you can plug a telephone line
from your telephone company (or “telco”) into this port. Asterisk can then use the
telco line to place and receive telephone calls. By that same token, if your Asterisk
server has a compatible FXS port, you may plug an analog telephone into your Aster-
isk server, so that Asterisk may call the phone and you may place calls.

Ports are defined in the configuration by the signaling they use, as opposed to the
physical type of port they are. For instance, a physical FXO port will be defined in
configuration with FXS signaling, and an FXS port will be defined with FXO signal-
ing. This can be confusing until you understand the reasons for it. FX_ cards are
named not according to what they are, but rather according to what is connected to
them. An FXS card, therefore, is a card that connects to a station. Since that is so,
you can see that in order to do its job, an FXS card must behave like a central office
and use FXO signaling. Similarly, an FXO card connects to a central office (CO),
which means it will need to behave like a station and use FXS signaling. The modem
in your computer is a classic example of an FXO device.

W N

o The older X100P card used a Motorola chipset, and the X101P (which
"‘.“ Digium sold before completely switching to the TDM400P) is based
v s on the Ambient/Intel MD3200 chipset. These cards are modems with

drivers adapted to utilize the card as a single FXO device (the tele-
phone interface cannot be used as an FXS port). Support for the
X101P card has been dropped in favor of the TDM series of cards. Use
of these cards (or their clones) is not recommended in production
environments.

Determining the FX0 and FXS Ports on Your TDM400P

Figure 4-1 contains a picture of a TDM400P with an FXS module and an FXO mod-
ule. You can’t see the colors, but module 1 is a green FXS module and module 2 is an
orange/red FXO module. In the bottom-right corner of the picture is the Molex con-
nector, where power is supplied from computer’s power supply.

Plugging an FXS port (the green module) into the PSTN may destroy
A the module and the card!

60 | Chapter4: Initial Configuration of Asterisk

4~ 4

*@%

é ,ch04.20428 Page 61 Wednesday, August 31, 2005 4:55 PM

Be sure to connect your computer’s power supply to the Molex con-
nector on the TDM400P if you have FXS modules, as it is used to gen-
wio: erate the voltage to produce ringing on the phone. The Molex
" connector is not required if you have only FXO modules.

Configuring an FX0 Channel

We'll start by configuring an FXO channel. First we’ll configure the Zaptel hard-
ware, and then the Zapata hardware. We’ll set up a very basic dialplan, and we’ll
show you how to test the channel.

Zaptel Hardware Configuration

The zaptel.conf file located in /etc/ is used to configure your hardware. The following
minimal configuration defines an FXO port with FXS signaling:
fxsks=2

loadzone=us
defaultzone=us

Configuring an FXO Channel | 61

é ,ch04.20428 Page 62 Wednesday, August 31, 2005 4:55 PM

In the first line, in addition to indicating whether we are using FXO or FXS signal-
ing, we specify one of the following protocols for channel 2:

* Loop start (1s)
* Ground start (gs)
e Kewlstart (ks)

The difference between loop start and ground start has to do with how the equip-
ment requests a dial tone: a ground start circuit signals the far end that it wants a dial
tone by momentarily grounding one of the leads; a loop start circuit uses a short to
request a dial tone. Though not common for new installations, analog ground start
lines still exist in many areas of the country.” For example, ground start lines are pre-
dominately used to reduce a condition known as “glare”t that is associated with loop
start lines and PBXs with high call volumes. All home lines (and analog telephones/
modems/faxes) in North America use loop start signaling. Kewlstart is in fact the
same as loop start, except that it has greater intelligence and is thus better able to
detect far-end disconnects.¥ Kewlstart is the preferred signaling protocol for analog
circuits in Asterisk.

To configure a signaling method other than kewlstart, replace the ks in fxsks with
either 1s or gs (for loop start or ground start, respectively).

loadzone configures the set of indications (as configured in zonedata.c) to use for the
channel. The zonedata.c file contains information about all the various sounds that a
phone system makes in a particular country: dial tone, ringing cycles, busy tone, and
so on. When you apply a loaded tone zone to a Zap channel, that channel will mimic
the indications for the specified country. Different indication sets can be configured
for different channels. The defaultzone is used if no zone is specified for a channel.

After configuring zaptel.conf, you can load the drivers for the card. modprobe is used
to load modules for use by the Linux kernel. For example, to load the wctdm driver,
you would run:

modprobe wctdm

* Yes, there is such a thing as ground start signaling on channelized T-1s, but that has nothing to do with an
actual ground condition on the circuit (which is entirely digital).

1 When a call is initiated from one end of a circuit at the same approximate time a call is initiated from the
opposite end of the circuit.

1 A far-end disconnect happens when the far end hangs up. In an unsupervised circuit, there is no method of
telling the near end that the call has ended. If you are on the phone this is no problem, since you will know
the call has ended and will manually hang up your end. If, however, your voicemail system is recording a
message, it will have no way of knowing that the far end has terminated and will thus keep recording silence,
or even the dial tone or reorder tone. Kewlstart can detect these conditions and disconnect the circuit.

62 | Chapter4: Initial Configuration of Asterisk

4~ ~4/o

é ,ch04.20428 Page 63 Wednesday, August 31, 2005 4:55 PM

If the drivers load without any output, they have loaded successfully.” You can verify
that the hardware and ports were loaded and configured correctly with the use of the
ztcfg program:

/sbin/ztcfg -wv

The channels that are configured and the signaling method being used will be dis-
played. For example, a TDM400P with one FXO module has the following output:

Zaptel Configuration

Channel map:
Channel 02: FXS Kewlstart (Default) (Slaves: 02)

1 channels configured.

If you receive the following error, you have configured the channel for the wrong sig-
naling method:
ZT_CHANCONFIG failed on channel 2: Invalid argument (22)

Did you forget that FXS interfaces are configured with FXO signalling
and that FXO interfaces use FXS signalling?

To unload drivers from memory, use the rmmod (remove module) command, like so:
rmmod wctdm

The zttool program is a diagnostic tool used to determine the state of your hardware.
After running it, you will be presented with a menu of all installed hardware. You
can then select the hardware and view the current state. A state of “OK” means the
hardware is successfully loaded:

Alarms Span
0K Wildcard TDM400P REV E/F Board 1

Zapata Hardware Configuration

Asterisk uses the zapata.conf file to determine the settings and configuration for tele-
phony hardware installed in the system. The zapata.conf file also controls the vari-
ous features and functionality associated with the hardware channels, such as Caller
ID, call waiting, echo cancellation, and a myriad of other options.

When you configure zaptel.conf and load the modules, Asterisk is not aware of any-
thing you’ve configured. The hardware doesn’t have to be used by Asterisk; it could
very well be used by another piece of software that interfaces with the Zaptel

* It is generally safe to assume that the modules have loaded successfully, but to view the debugging output
when loading the module, check the console output (by default this is located on TTY terminal 9, but this is
configurable in the safe_asterisk script—see the previous chapter for details).

Configuring an FXO Channel | 63

4~ ~4/o

é ,ch04.20428 Page 64 Wednesday, August 31, 2005 4:55 PM

modules. You tell Asterisk about the hardware and control the associated features via
zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]

; hardware channels
; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes

; define channels

context=incoming ; Incoming calls go to [incoming] in extensions.conf
signalling=fxs ks ; Use FXS signalling for an FXO channel
channel => 2 ; PSTN attached to port 2

The [trunkgroups] section is for NFAS and GR-303 connections, and it won’t be dis-
cussed in this book. If you require this type of functionality, see the zapata.conf.sam-
ple file for more information.

The [channels] section determines the signaling method for hardware channels and
their options. Once an option is defined, it is inherited down through the rest of the
file. A channel is defined using channel =>, and each channel definition inherits all
the options defined above that line. If you wish to configure different options for dif-
ferent channels, remember that the options should be configured before the channel
=> definition.

We've enabled Caller ID with usecallerid=yes and specified that it will not be hidden
for outgoing calls with hidecallerid=no. Call waiting is deactivated on an FXO line
with callwaiting=no. Enabling three-way calling with threewaycalling=yes allows an
active call to be placed on hold with a hook switch flash (discussed in Chapter 7) to
suspend the current call. You may then dial a third party and join them to the conver-
sation with another hook switch. The default is to not enable three-way calling.

Allowing call transfer with a hook switch is accomplished by configuring
transfer=yes; it requires that three-way calling be enabled. The Asterisk echo cancel-
ler is used to remove the echo that can be created on analog lines. You can enable the
echo canceller with echocancel=yes. The echo canceller in Asterisk requires some
time to learn the echo, but you can speed this up by enabling echo training
(echotraining=yes). This tells Asterisk to send a tone down the line at the start of a
call to measure the echo, and therefore learn it more quickly.

When a call comes in on an FXO interface, you will want to perform some action.
The action to be performed is configured inside a block of instructions called a

64 | Chapter4: Initial Configuration of Asterisk

4~ ~4/o

é ,ch04.20428 Page 65 Wednesday, August 31, 2005 4:55 PM

*

context. Incoming calls on the FXO interface are directed to the incoming context
with context=incoming. The instructions to perform inside the context are defined
within extensions.conf.

Finally, since an FXO channel uses FXS signaling, we define it as such with
signalling=fxs_ks.

Dialplan Configuration

The following minimal dialplan makes use of the Echo() application to verify that
bidirectional communications for the channel are working:

[incoming]

; incoming calls from the FXO port are directed to this context from zapata.conf

exten => s,1,Answer()
exten => s,2,Echo()

Whatever you say, the Echo() application will relay back to you.

Dialing in
Now that the FXO channel is configured, let’s test it. Run the zttool application and

connect your PSTN line to the FXO port on your TDM400P. Once you have a phone
line connected to your FXO port, you can watch the card come out of a RED alarm.

Now dial the PSTN number from another external phone (such as a cell phone). Aster-
isk will answer the call and execute the Echo() application. If you can hear your voice
being reflected back, you have successfully installed and configured your FXO channel.

Configuring an FXS Channel

The configuration of an FXS channel is similar to that of an FXO channel. Let’s take
a look.

Zaptel Hardware Configuration

The following is a minimal configuration for an FXS channel on a TDM400P. The
configuration is identical to the FXO channel configuration above, with the addition
of fxoks=1.

Recall from our earlier discussion that the opposite type of signaling is used for FXO
and FXS channels, so we will be configuring FXO signaling for our FXS channel. In
the example below we are configuring channel 1 to use FXO signaling, with the
kewlstart signaling protocol:

fxoks=1

fxsks=2

loadzone=us
defaultzone=us

Configuring an FXS Channel | 65

ﬁ

*ﬁ%

é ,ch04.20428 Page 66 Wednesday, August 31, 2005 4:55 PM

After loading the drivers for your hardware, you can verify their state with the use of
/sbin/ztcfg -vv:

Zaptel Configuration

Channel map:

Channel 01: FXO Kewlstart (Default) (Slaves: 01)
Channel 02: FXS Kewlstart (Default) (Slaves: 02)

2 channels configured.

Zapata Hardware Configuration

The following configuration is identical to that for the FXO channel, with the addition
of a section for our FXS port and of the line immediate=no. The context for our FXS port
is internal, the signaling is fxoks (kewlstart), and the channel number is set to 1.

FXS channels can be configured to perform one of two different actions when a
phone is taken off the hook. The most common (and often expected) option is for
Asterisk to produce a dial tone and wait for input from the user. This action is
configured with immediate=no. The alternative action is for Asterisk to automati-
cally perform a set of instructions configured in the dialplan instead of producing
a dial tone, which you indicate by configuring immediate=yes.” The instructions to
be performed are found in the context configured for the channel and will match
the s extension (both of these topics will be discussed further in the following
chapter).

Here’s our new zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]

; hardware channels
; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes
immediate=no

* Also referred to as the BatPhone method, and more formally known as an Automatic Ringdown or Private Line
Automatic Ringdown (PLAR) circuit. This method is commonly used at rental car counters and airports.

66 | Chapter4: Initial Configuration of Asterisk

4~ ~4/o

é ,ch04.20428 Page 67 Wednesday, August 31, 2005 4:55 PM

; define channels
context=internal
signalling=fxo_ks
channel => 1

Uses the [internal] context in extensions.conf
Use FX0 signalling for an FXS channel
Telephone attached to port 1

e e

e

context=incoming
signalling=fxs_ks
channel => 2

Incoming calls go to [incoming] in extensions.conf
Use FXS signalling for an FXO channel
PSTN attached to port 2

[N

-

Dialplan Configuration

To test our newly created Zap extension, we need to create a basic dialplan. The fol-
lowing dialplan contains a context called internal. This is the same context name
that we configured in zapata.conf for channel 1. When we configure
context=internal in zapata.conf, we are telling Asterisk where to look for instruc-
tions when a user presses digits on his telephone. In this case, the only extension
number that will work is 611. When you dial 611 on your telephone, Asterisk will
execute the Echo(') application so that when you talk into the phone whatever you
say will be played back to you, thereby verifying bidirectional voice.

The dialplan looks like this:

[internal]
exten => 611,1,Answer()
exten => 611,2,Echo()

Configuring SIP

The Session Initiation Protocol (SIP), often used in VoIP phones (either hard phones
or soft phones), takes care of the setup and teardown of calls, along with any renego-
tiations during a call. Basically, it helps two endpoints talk to each other (if possible,
directly to each other). SIP does not carry media; rather, it uses the Real-time Trans-
port Protocol (RTP) to transfer the media” directly between phone A and phone B
once the call has been set up.

SIP and RTP

SIP is an application-layer signaling protocol that uses the well-known port 5060 for
communications. SIP can be transported with either the UDP or TCP transport-layer
protocols. Asterisk does not currently have a TCP implementation for transporting
SIP messages, but it is possible that future versions may support it (and patches to
the code base are gladly accepted). SIP is used to “establish, modify, and terminate

* We use the term media to refer to the data transferred between endpoints and used to reconstruct your voice
at the other end. It may also refer to music or prompts from the PBX.

ConfiguringSIP | 67

4~ ~4/o

é ,ch04.20428 Page 68 Wednesday, August 31, 2005 4:55 PM

”*

multimedia sessions such as Internet telephony calls.”” SIP does not transport media

between endpoints.

RTP is used to transmit media (i.e., voice) between endpoints. RTP uses high-num-
bered, unprivileged ports in Asterisk (10,000 through 20,000, by default).

A common topology to illustrate SIP and RTP, commonly referred to as the “SIP
trapezoid,” is shown in Figure 4-2. When Alice wants to call Bob, Alice’s phone con-
tacts her proxy server, and the proxy tries to find Bob (often connecting through his
proxy). Once the phones have started the call, they communicate directly with each
other (if possible), so that the data doesn’t have to tie up the resources of the proxy.

SIPsignaling

RTP media

Figure 4-2. The SIP trapezoid

SIP was not the first, and is not the only, VoIP protocol in use today (others include
H.323, MGCP, TAX, and so on), but currently it seems to have the most momentum
with hardware vendors. The advantages of the SIP protocol lie in its wide acceptance
and architectural flexibility (and, we used to say, simplicity!).

SIP Configuration

Here is a basic sip.conf file:

[general]
context=default
srvlookup=yes

[john]
type=friend
secret=welcome
qualify=yes
nat=no
host=dynamic
canreinvite=no
context=internal

Qualify peer is no more than 2000 ms away
This phone is not natted

This device registers with us

Asterisk by default tries to redirect

the internal context controls what we can do

e e v e we

* RFC 3261, SIP: Session Initiation Protocol, p. 9, Section 2.

68 | Chapter4: Initial Configuration of Asterisk

4~ ~4/o

é ,ch04.20428 Page 69 Wednesday, August 31, 2005 4:55 PM

*

The sip.conf file starts with a [general] section, which contains the channel settings
and default options for all users and peers defined within sip.conf. You can override
the default settings on a per-user/peer basis by configuring them within the user/peer
definition.

Domain Name System Service records (DNS SRV records) are a way of setting up a
logical, resolvable address where you can be reached. This allows calls to be for-
warded to different locations without the need to change the logical address. By
using SRV records, you gain many of the advantages of DNS, whereas disabling them
breaks the SIP RFC and removes the ability to place SIP calls based on domain
names. (Note that if multiple records are returned, Asterisk will use only the first.)
DNS SRV record lookups are disabled by default in Asterisk, but it’s highly recom-
mended that you turn them on. To enable them, set srvlookup=yes in the [general]
section of sip.conf.

Each connection is defined as a user, peer, or friend. A user type is used to authenti-
cate incoming calls, a peer type is used for outgoing calls, and a friend type is used
for both. The extension name is defined within square brackets ([]). In this case, we
have defined the extension john as a friend.

A secret is a password used for authentication. Our secret is defined as welcome. We
can monitor the latency between our Asterisk server and the phone with qualify=yes,
thereby determining whether the remote device is reachable. qualify=yes can be used
to monitor any end device, including other Asterisk servers. By default, Asterisk will
consider an extension reachable if the latency is less than 2,000 ms (2 seconds). You
can configure the time Asterisk should use when determining whether or not a peer is
reachable by replacing yes with the number of milliseconds.

If an extension is behind a device performing Network Address Translation (NAT),
such as a router or firewall, configure nat=yes to force Asterisk to ignore the contact
information for the extension and use the address from which the packets are being
received. Setting host=dynamic will require the extension to register so that Asterisk
knows how to reach the phone. To limit an endpoint to a single IP address or fully
qualified domain name (FQDN), replace dynamic with the IP address or domain
name. Note that this limits only where you place calls to, as the user is allowed to
place calls from anywhere (assuming she has authenticated successfully). If you set
host=static, the end device is not required to register.

We’ve also set canreinvite=no. In SIP, invites are used to set up calls and to redirect
media. Any invite issued after the initial invite in the same dialog is referred to as a rein-
vite. For example, suppose two parties are exchanging media traffic. If one client goes
on hold and Asterisk is configured to play Music on Hold (MoH), Asterisk will issue a
reinvite to the secondary client, telling it to redirect its media stream toward the PBX.
Asterisk is then able to stream music or an announcement to the on-hold client.

ConfiguringSIP | 69

%

ﬁ

*@%

é ,ch04.20428 Page 70 Wednesday, August 31, 2005 4:55 PM

The primary client then issues an off-hold command in a reinvite to the PBX, which
in turn issues a reinvite to the secondary party requesting that it redirect its media
stream toward the primary party, thereby ending the on-hold music and reconnect-
ing the clients.

Normally, when two endpoints set up a call they pass their media directly from one
to the other. Asterisk generally breaks this rule by staying within the media path,
allowing it to listen for digits dialed on the phone’s keypad. This is necessary because
if Asterisk cannot determine the call length, inaccurate billing can occur. Configur-
ing canreinvite=no forces Asterisk to stay in the media path, not allowing RTP mes-
sages to be exchanged directly between the endpoints.

Asterisk will not issue a reinvite in any of the following situations:

* If either of the clients is configured with canreinvite=no

* If the clients cannot agree on a common set of codecs and Asterisk needs to per-
form codec conversion

* If either of the clients is configured with nat=yes

* If Asterisk needs to listen to Dual Tone Multi-Frequency (DTMF) tones during
the call (for transfers or any other features)

Lastly, context=internal specifies the location of the instructions used to control
what the phone is allowed to do, and what to do with incoming calls for this exten-
sion. The context name configured in sip.conf matches the name of the context in
extensions.conf, which contains the instructions. More information about contexts
and dialplans will be presented in the following chapter.

If you are configuring a number of clients with similar configurations, you can place
like commands under the [general] heading. Asterisk will use the defaults specified
in the [general] section unless they are explicitly changed within a client’s configura-
tion block.

Client Configuration

While it would be impossible to show all the possible configurations for all the end
devices that can communicate with Asterisk, we feel it beneficial to provide the con-
figuration for at least one free soft phone, which you can use in determining if Aster-
isk is right for your organization. We’ve chosen to use X-ten’s X-Lite client, which
you can download from their web site (http://www.xten.com).

The configuration of the client is generally straightforward. The most important parts
are the username and password for registration, plus the address of the Asterisk server
with which you wish to register. Figure 4-3 shows a sample configuration for the X-Lite
client. Be sure to modify the values of the fields to reflect your configuration.

70 | Chapter4: Initial Configuration of Asterisk

4~ ~4/o

%% é ,ch04.20428 Page 71 Wednesday, August 31, 2005 4:55 PM

*

Figure 4-3. X-Lite soft phone configuration screen

The display name is the string that will be used for Caller ID. The username and
authorization user are used for authentication, along with the password. The
domain/realm should be the IP address or FQDN of your Asterisk server. The SIP
proxy is the same as the one entered for the domain/realm, but with :5060 appended
(this specifies the port number to use for SIP signaling—be sure it matches the port
you have configured in sip.conf).

After entering all this information, verify that Enabled is set to Yes, and then close the
configuration menu. X-Lite will then register to Asterisk. If X-Lite doesn’t appear to
register, simply restart the client. Because X-Lite is minimized to the task tray when
you close the application with the X button, you will need to exit the program by
right-clicking on the icon in the tray and then clicking “Exit” in the pop-up menu
before restarting.

Dialplan Configuration

Many SIP phones, both soft and hard, are multi-line phones. This means they can
accept multiple incoming calls at the same time. Thus, to test your X-Lite soft phone
you can simply call yourself, and the call will loop back from the Asterisk server and

ConfiguringSIP | 71

%

ﬁ

%%

é ,ch04.20428 Page 72 Wednesday, August 31, 2005 4:55 PM

*

onto line two of the client. To call yourself, dial extension 100. If your preferred cli-
ent doesn’t support multi-line functionality, you can use extension 611 to enter the
Echo() test application.

[internal]

exten => 100,1,Dial(SIP/john)
exten => 611,1,Echo()

Configuring Inbound IAX Connections

The Inter-Asterisk eXchange (IAX) protocol is usually used for server-to-server com-
munication; more hard phones are available that talk SIP. However, there are several
soft phones that support the IAX protocol, and work is progressing on several fronts
for hard phone support in firmware. The primary difference between the IAX and SIP
protocols is the way media (your voice) is passed between endpoints.

With SIP, the RTP (media) traffic is passed using different ports than those used by
the signaling methods. For example, Asterisk receives the signaling of SIP on port
5060 and the RTP (media) traffic on ports 10,000 through 20,000, by default. The
IAX protocol differs in that both the signaling and media traffic are passed via a sin-
gle port: 4569. An advantage to this approach is that the IAX protocol tends to be
better suited to topologies involving NAT.

An TAX user is used to authenticate and handle calls coming into the PBX system.
For calls going out from the PBX, Asterisk uses an IAX peer entry in the iax.conf file
to authenticate with the remote end. (IAX peers will be explored in the section “Con-
figuring Outbound IAX Connections.”)

This section explores the configuration of your system for a Free World Dialup
(FWD) account via IAX. Free World Dialup is a free VoIP service provider that
allows you to connect to any other member of the network, regardless of physical
location, for free. FWD is also connected to over 100 other networks to which you
can connect for free.

W R
iy Be sure to enable IAX2 support for your FWD account before you get
t‘s‘.‘ started by visiting http://www.fwdnet.net/index.php?section_id=112.

This section sets up iax.conf and extensions.conf to allow you to accept calls from
another FWD user. The section on outgoing IAX connections deals with placing calls.

iax.conf Configuration

In iax.conf, sections are defined with a name enclosed in square brackets ([]). Every
iax.conf file needs at least one main section: [general]. Within the [general] section,

72 | Chapter4: Initial Configuration of Asterisk

%

ﬁ

*@%

é ,ch04.20428 Page 73 Wednesday, August 31, 2005 4:55 PM

you define the settings related to the use of the IAX protocol, such as default codecs
and jitter buffering. You can override the default codecs you specify in the [general]
section by specifying them within the user or peer definitions.

The following [general] section is the default from the iax.conf.sample configura-
tion file (the same file that’s installed when you perform a make samples). For more
information about the options, see Appendix A.

[general]

bandwidth=1ow

disallow=1pc10

jitterbuffer=no

forcejitterbuffer=no

tos=lowdelay
autokill=yes

register => fwd number:password@iax2.fwdnet.net

[iaxfwd]

type=user

context=incoming

auth=rsa

inkeys=freeworlddialup
Within the [general] section, you’ll need to add a register statement. The purpose
of the register statement is to tell the FWD IAX server where you are on the Inter-
net (your IP address). When a call is placed to your FWD number, the FWD servers
do a lookup in their database and forward the call to the IP address associated with
the FWD number.

In the [iaxfwd] section, define the user for incoming calls with type=user. Then
define where the incoming call will be handled within the dialplan, with
context=incoming. To specify that the authentication for the incoming call will be
done with an RSA public/private key pair, use auth=rsa. The public key is defined
with inkeys=freeworlddialup. The freeworlddialup public key comes standard with
Asterisk.

Dialplan Configuration

Handling an incoming call in the extensions.conf file is simple. First, create a context
called incoming (the same context name configured for the iaxfwd user in iax.conf).
The context is followed by a Dial() statement that will dial the SIP extension cre-
ated earlier in this chapter. Replace the number 10001 with that of your FWD
account:

[incoming]
exten => 10001,1,Dial(SIP/john)

Configuring Inbound IAX Connections | 73

- ad

é ,ch04.20428 Page 74 Wednesday, August 31, 2005 4:55 PM

*

Configuring Outbound IAX Connections

While an TAX user receives inbound calls; an IAX peer is used to place outbound
calls. This section will set up iax.conf and extensions.conf so that you can place calls.

iax.conf Configuration

The following entry in iax.conf can be used to place a call on the FWD network:

[iaxfwd]

type=peer
host=iax2.fwdnet.net
username=<fwd-account-number>
secret=<fwd-account-password>
qualify=yes

disallow=all

allow=ulaw

allow=gsm

allow=ilbc

allow=g726

A peer is defined with type=peer. Use host to configure the server through which you
will place calls (iax2.fwdnet.net). Your FWD account number and password will be

used for authentication to the FWD network and are defined respectively with
username and secret.

You can use the qualify=yes statement to occasionally check that the remote server
is responding. The response time (latency) can be viewed from the Asterisk console
with iax2 show peers. By default, a peer is considered unreachable after 2000 ms (2
seconds). You can customize the time period by replacing yes with the number of
milliseconds.

The available codecs and the order of preference can be defined on a per-peer basis.
disallow=all is used to reset any codec settings set previously. You can then allow
the codecs you support and set their preference (from top to bottom), using the syn-
tax allow=codec.

Use the iax2 show registry command from the Asterisk CLI to verify that you've
registered successfully.

Dialplan Configuration

Let’s define a section in extensions.conf so that we can place a call to the FWD echo
test application. As in previous configurations, we will create a context, followed by
the instructions to connect to the FWD echo test. Use either your telephone attached
to the FXS port or your SIP phone to place the call by dialing 613.

[internal]
exten => 613,1,Dial(IAX2/iaxfwd/613)

74 | Chapter4: Initial Configuration of Asterisk

%

ﬁ

*ﬁ%

é ,ch04.20428 Page 75 Wednesday, August 31, 2005 4:55 PM

Debugging

Several methods of debugging are available in Asterisk. Once you’ve connected to
the console, you can enable different levels of verbosity and debugging output, as
well as protocol packet tracing. We’ll take a look at the various options in this sec-
tion. (The Asterisk console is discussed in more detail in Appendix E.)

Connecting to the Console

To connect to the Asterisk console, you can either start the server in the console
directly (in which case you will not be able to exit out of the console without killing
the Asterisk process), or start Asterisk as a daemon and then connect to a remote
console.

To start the Asterisk process directly in the console, use the console flag:
/usr/sbin/asterisk -c

To connect to a remote Asterisk console, start the daemon first, then connect with
the -1 flag:

/usr/sbin/asterisk

/usr/sbin/asterisk -r
If you are having a problem with a specific module not loading, or a module causing
Asterisk to not load, start the Asterisk process with the —c flag to monitor the status
of modules loading. For example, if you attempt to load the OSS channel driver
(which allows the use of the CONSOLE channel), and Asterisk is unable to open /dev/
dsp, you will receive the following error on startup:

WARNING[32174]: chan_o0ss.c:470 soundcard init: Unable to open /dev/dsp: No such file

or directory

== No sound card detected -- console channel will be unavailable

== Turn off 0SS support by adding 'noload=chan oss.so' in /etc/asterisk/modules.
conf

Enabling Verbosity and Debugging

Asterisk can output debugging information in the form of WARNING, NOTICE, and ERROR
messages. These messages will give you information about your system, such as reg-
istrations, status and progression of calls, and various other useful bits of informa-
tion. Note that WARNING and NOTICE messages are not errors; however, ERROR messages
should be investigated. To enable various levels of verbosity, use set verbose fol-
lowed by a numerical value. Useful values range from 3 to 10. For example, to set the
highest level of verbosity, use:

set verbose 10

Debugging | 75

é ,ch04.20428 Page 76 Wednesday, August 31, 2005 4:55 PM

*

.

You can also enable core debugging messages with set debug followed by a numeri-
cal value. To enable DEBUG output on the console, you may need to enable it in the
logger.conf file by adding debug to the console => statement, as follows:

console => warning,notice,error,event,debug
Useful values for set debug range from 3 to 10. For example:

set debug 10

Conclusion

If you’ve worked through all of the sections in this chapter, you will have configured
a pair of analog interfaces, a local SIP channel connected to a soft phone, and a con-
nection to Free World Dialup via IAX2. These configurations are quite basic, but
they give us functional channels to work with. We will make use of them in the fol-
lowing chapters, while we learn to build more useful dialplans.

76 | Chapter4: Initial Configuration of Asterisk

%

ﬁ

*@%

