
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

31

Chapter 3 CHAPTER 3

Installing Asterisk

I long to accomplish great and noble tasks, but it is my
chief duty to accomplish humble tasks as though they
were great and noble. The world is moved along, not

only by the mighty shoves of its heroes, but also by the
aggregate of the tiny pushes of each honest worker.

—Helen Keller

In the previous chapter, we discussed preparing a system to install Asterisk. Now it’s
time to obtain, extract, compile, and install the software.

Although a large number of Linux distributions* and PC architectures are excellent
candidates for Asterisk, we have chosen to focus on a single distribution in order to
maintain brevity and clarity throughout the book. The instructions that follow have
been made as generic as possible, but you may notice a leaning toward Red Hat
structures and utilities. We have chosen to focus on Red Hat because its command
set, directory structure, and so forth are likely to be familiar to the majority of users
(we have found that most Linux administrators are familiar with Red Hat, even if
they don’t prefer it). However, this doesn’t mean that Red Hat is the only choice, or
even the best one for you. A question that often appears on the mailing lists is:
“Which distribution of Linux is the best to use with Asterisk?” The multitude of
answers generally boils down to “the one you like the best.”

What Packages Do I Need?
Asterisk uses three main packages: the main Asterisk program (asterisk), the Zapata
telephony drivers (zaptel), and the PRI libraries (libpri). If you plan on a pure VoIP
network, the only real requirement is the asterisk package. The zaptel drivers are

* And some non-Linux operating systems as well, such as Solaris, *BSD, and OS X. However, while people
have managed to successfully run Asterisk on these alternative systems, Asterisk was, and continues to be,
actively developed for Linux.

,ch03.20288 Page 31 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 3: Installing Asterisk

required if you are using analog or digital hardware, or if you’re using the ztdummy
driver (discussed later in this chapter) as a timing interface. The libpri library is tech-
nically optional unless you’re using ISDN PRI interfaces, and you may save a small
amount of RAM if you don’t load it, but we recommend that it be installed in con-
junction with the zaptel package for completeness.

One other package you may want to install is asterisk-sounds. While Asterisk comes
with many sound prompts in the main source distribution, the asterisk-sounds pack-
age will give you even more. If you would like to expand the number of profession-
ally recorded prompts for use with your Asterisk system, this package is essential.
Some of our examples in the following chapters will make use of files included in this
package, so we will assume that you have it installed.

Package Requirements
To compile Asterisk, you must install the GCC compiler (Version 3.x or later) and its
dependencies. While Version 2.96 of GCC may work for the time being, future ver-
sions will not support it. Asterisk also requires bison, a parser generator program that
replaces yacc, and ncurses for CLI functionality. The cryptographic library in Aster-
isk requires OpenSSL and its development packages. If you want to use ztdummy for
timing, or any of the hardware drivers provided by Zaptel, you’ll need to install the
zaptel package as well. If you are installing libpri, be sure to install it before asterisk
(see “Compiling libpri”).

Zaptel requires libnewt and its development packages for the zttool program (see
“Using ztcfg and zttool,” below) and the usb-uhci module for ztdummy. If you’re
using PRI interfaces, Zaptel also requires the libpri package (again, even if you aren’t
using PRI circuits, we recommend that you install libpri along with zaptel).

The following sections discuss how to obtain, extract, compile, and install the aster-
isk, zaptel, libpri, and asterisk-sounds packages.

Obtaining the Source Code
The Asterisk source code can be obtained either through FTP or CVS. We will show
you how to acquire the source with both methods, although you only need to use
one of them to retrieve the packages (FTP is the preferred method).

Obtaining Asterisk Source Code from FTP
The Asterisk source code can be obtained from the Digium FTP server, located at ftp://
ftp.digium.com. The easiest way to obtain the stable release is through the use of the
program wget.

,ch03.20288 Page 32 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Obtaining the Source Code | 33

Note that we will be making use of the /usr/src/ directory to extract and compile the
Asterisk source. Also be aware that you will need root access to write files to the /usr/
src/ directory and to install Asterisk and its associated packages.

To obtain the latest stable source code via wget, enter the following commands on
the command line:

cd /usr/src/
wget -–passive-ftp ftp.digium.com/pub/asterisk/asterisk-1.*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/asterisk/asterisk-sounds-*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/zaptel/zaptel-*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/libpri/libpri-*.tar.gz

As long as Digium doesn’t change the way they put things on the FTP
site, the wget command will automagically get the latest version. You
may also replace the wildcard mask (*) with the currently available
software version.

Now that you’ve retrieved the files for Asterisk and the Digium hardware, you are
ready to extract the code.

Extracting the Source Code
If you use wget to obtain the source code from the FTP server, you will need to
extract it before compiling. If you didn’t download the packages to /usr/src/, either

Stable and Head
Asterisk comes in two different flavors, generally referred to as stable and head. Stable,
as the name implies, is the established branch of Asterisk for use in production sys-
tems. The head branch is what the developers use to test new features and bug fixes.

Bug fixes (not features) are merged over to the stable branch after a reasonable period
of testing. It is entirely possible that the development branch may be broken at certain
points during testing; thus, the stable branch is what you will want to run your produc-
tion system on, and it is what we will be using throughout this book.

You can obtain stable releases via FTP. Both the stable and head branches of Asterisk
can also be obtained from CVS, as explained later in this chapter. However, it is impor-
tant to note the difference between releases and CVS. Releases are snapshots from the
stable CVS tree, tagged with a version number and released via the FTP server when a
new stable release is deemed ready. Note that the stable CVS branch is not a release—
it’s a work in a progress, and it may be buggy (i.e., not so stable after all). The FTP tar-
balls are the actual releases.

To summarize, use only stable releases obtained via the FTP server for production
systems.

,ch03.20288 Page 33 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 3: Installing Asterisk

move them there now, or specify the full path to their location. We will be using the
GNU tar application to extract the source code from the compressed archive. This is
a simple process that can be achieved through the use of the following commands:

cd /usr/src/
tar zxvf zaptel-*.tar.gz
tar zxvf libpri-*.tar.gz
tar zxvf asterisk-*.tar.gz
tar zxvf asterisk-sounds*.tar.gz

These commands will extract the packages and source code to their respective
directories.

Obtaining Asterisk Source Code from CVS
The Concurrent Versioning System (CVS) is a tool that provides a central repository
that large (and diverse) development teams can use to manage the multitude of files
associated with a development project. When a change is made, it is committed to
the CVS server, where it is immediately available for download and compilation.
Another added benefit of using CVS is that the version for any particular file can be
rolled back to a certain instance, so that if something was working at one point but a
change causes it to break, you can easily revert to the working version. This is true
for the entire tree as well. If you find that installing the latest version of Asterisk
causes any part of the system to break, you can “roll back” to an earlier point in time
and investigate the cause of the problem.

If you are a developer looking to obtain the latest updates to the source code, you
will need to get them from the CVS servers. You can also download the stable branch
via CVS:

• Export the CVSROOT path:
cd /usr/src/
export CVSROOT=:pserver:anoncvs:anoncvs@cvs.digium.com:/usr/cvsroot

• Download HEAD from CVS:
cvs checkout zaptel libpri asterisk

• Download STABLE 1.0 from CVS:
cvs checkout –r v1-0 zaptel libpri asterisk

• Download STABLE 1.2 from CVS:
cvs checkout –r v1-2 zaptel libpri asterisk

• Download optional modules from CVS:
cvs checkout asterisk-sounds asterisk-addons

Again, note that the stable branch available from CVS is not a release and should not
be used for production systems.

,ch03.20288 Page 34 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 35

Compiling Zaptel
Figure 3-1 shows the layers of interaction between Asterisk and the Linux kernel
with respect to hardware control. On the Asterisk side is the Zapata channel mod-
ule, chan_zap. Asterisk uses this interface to communicate with the Linux kernel,
where the drivers for the hardware are loaded.

The Zaptel interface is a kernel loadable module that presents an abstraction layer
between the hardware drivers and the Zapata module in Asterisk. It is this concept
that allows the device drivers to be modified without any changes being made to the
Asterisk source itself. The device drivers are used to communicate with the hard-
ware directly and to pass the information between Zaptel and the hardware.

While Asterisk itself compiles on a variety of platforms, the Zaptel
drivers are Linux-specific—they are written to interface directly with
the Linux kernel. There are no official Zaptel drivers for other operat-
ing systems, although work has been going on to write drivers for
FreeBSD.

We will discuss the Zaptel compile-time options momentarily, in “The zconfig.h
File.” First, let’s take a look at compiling and installing the drivers. (The configura-
tion of Zaptel drivers will be discussed in the next chapter.)

Figure 3-1. Layers of device interaction with Asterisk

Asterisk

chan_zap.so

/dev/zap

Zaptel

Hardware driver
(wctdm)

Hardware

Linux kernel

,ch03.20288 Page 35 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 3: Installing Asterisk

Before compiling the Zaptel drivers on a system running a Linux 2.4
kernel, you should verify that /usr/src/ contains a symbolic link named
linux-2.4 pointing to your kernel source. If the symbolic link doesn’t
exist, you can create it with the following command (assuming you’ve
installed the source in /usr/src/):

ln –s /usr/src/`uname –r` /usr/src/linux-2.4

Computers running Linux 2.6 kernel–based distributions do not usu-
ally require the use of the symbolic link, as these distributions will
search for the kernel build directory automatically. However, if you’ve
placed the build directory in a nonstandard place (i.e., somewhere
other than /lib/modules/<kernel version>/build/), you will require the
use of the symbolic link.

The ztdummy Driver
In Asterisk, certain applications and features require a timing device in order to oper-
ate (Asterisk won’t even compile them if no timing device is found). All Digium PCI
hardware provides a 1-kHz timing interface. If you lack the PCI hardware required to
provide timing, the ztdummy driver can be used as a timing device. On Linux 2.4 ker-
nel–based distributions, ztdummy must use the clocking provided by the UHCI USB
controller. The driver looks to see that the usb-uhci module is loaded and that the ker-
nel version is at least 2.4.5. Older kernel versions are incompatible with ztdummy.

On a 2.6 kernel–based distribution, ztdummy does not require the use of the USB
controller. (As of v2.6.0, the kernel now provides 1-kHz timing with which the driver
can interface; thus, the USB controller hardware requirement is no longer necessary.)

The default Makefile configuration does not create ztdummy. To compile ztdummy,
you must remove a comment marker from the Makefile. Open it in your favorite text
editor and look for the following line:

MODULES=zaptel tor2 torisa wcusb wcfxo wctdm \
 ztdynamic ztd-eth wct1xxp wct4xxp wcte11xp # ztdummy

Remove the hash* (#) symbol from in front of “ztdummy,” save the file, and compile
Zaptel as usual.

The Zapata Telephony Drivers
Compiling the Zapata telephony drivers for use with your Digium hardware is
straightforward—simply run make for either the 2.4 or 2.6 Linux kernels (the Make-

* The # symbol is most widely known as “hash,” so that is what we have chosen to call it. North Americans
tend to call it a “pound sign,” the ITU uses the term “square,” and yet others call it a “crosshatch” or “num-
ber sign.” Another term, made up by Don Macpherson to describe the # symbol during initial training on an
early PBX system, is “octothorpe.” This term eventually found its way into memos and letters at Bell Labs,
then into other official documents, and from there leaked to the Internet.

,ch03.20288 Page 36 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 37

file will determine the kernel version for you). Use these commands to compile Zap-
tel (replace version with your version of zaptel):

cd /usr/src/zaptel-version
make clean
make
make install

While running make clean is not always necessary, it’s a good idea to
run it before recompiling any of the modules, as it will remove the
compiled binary files from within the source code directory. You can
also use it to clean up after installing, if you don’t like to leave the
compiled binaries floating around. Note that this removes the binaries
only from the source directory, not from the system.

In addition to the executables, make clean also removes the intermedi-
ary files (i.e., the object files) after compilation. You don’t need them
occupying space on your hard drive.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directo-
ries, you may wish to run the make config command as well. This will install the star-
tup scripts and configure the system, using the chkconfig command to load the
zaptel module automatically at startup.

The Debian equivalent of chkconfig is update-rc.d.

Using ztcfg and zttool
Two programs installed along with Zaptel are ztcfg and zttool. The ztcfg program is
used to read the configuration in /etc/zaptel.conf to configure the hardware. The
zttool program can be used to check the status of your installed hardware. For
instance, if you are using a T1 card and there is no communication between the end-
points, you will see a red alarm. If everything is configured correctly and communica-
tion is possible, you should see an “OK.” The zttool application is also useful for
analog cards, because it tells you their current state (configured, off-hook, etc.). The
use of these programs will be explored further in the next chapter.

The libnewt libraries and its development packages (newt-devel on Red
Hat–based distributions) must be installed for zttool to be compiled.

,ch03.20288 Page 37 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 3: Installing Asterisk

The zconfig.h File
The zconfig.h file is where many of the Zaptel compile-time options lie. For the most
part, you should not need to edit this file, but below are some of the options that
may be of interest. To enable the options, remove the comment tags (/* */). If you
decide to enable any of these options, be sure to do a make clean before recompiling
and reinstalling Zaptel.

Boost ringer

By enabling the BOOST_RINGER option, you increase the amount of voltage supplied to
a telephone during ringing from ~70V to ~89V. Some devices may not detect ring-
ing below certain voltages, so this setting may be necessary. Note that upping the
voltage requires more power, and that it will probably only be necessary on a tele-
phone connected to a long loop. Basically, you should leave this alone unless the far
end isn’t detecting ringing properly. To enable this option, uncomment the follow-
ing line:

/* #define BOOST_RINGER */

The BOOST_RINGER option can also be declared when loading the driver via modprobe,
so it does not need to be compiled into the driver (recommended).

Disable µ-law/A-law precomputation

Defining CONFIG_CALC_XLAW tells Zaptel to not precompute µ-law/A-law into tables
and to recalculate it for each sample. We haven’t timed it, but the original coder felt
that if you have a small number of channels and/or a small level-2 cache, it may be
quicker to execute the calculation code than to actually do a lookup on the table
loaded into memory.

To enable this option, uncomment the following line within zconfig.h:

/* #define CONFIG_CALC_XLAW */

Enable MMX optimization

You can enable MMX optimization (if your processor supports it) by removing the
comment tags around the following line:

/* #define CONFIG_ZAPTEL_MMX */

Be aware that CONFIG_ZAPTEL_MMX is considered to be incompatible with AMD proces-
sors and can cause system instability.

Choose echo cancellation method

All the echo cancellers in Asterisk use a Finite Impulse Response (FIR) algorithm.
The differences between them—mostly in code implementation and slight algorithm

,ch03.20288 Page 38 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 39

tweaks—are minimal. By default, the MARK2 echo canceller is used, and it is gener-
ally considered the most robust. To change the default, add comment tags around
the #define ECHO_CAN_MARK2 line and uncomment another line:

/* #define ECHO_CAN_STEVE */
/* #define ECHO_CAN_STEVE2 */
/* #define ECHO_CAN_MARK */
#define ECHO_CAN_MARK2
/* #define ECHO_CAN_MARK3 */

Enable aggressive suppression

Aggressive residual echo suppression with the MARK2 echo canceller can be enabled
by removing the comment tags around the following line:

/* #define AGGRESSIVE_SUPPRESSOR */

The aggressive suppressor makes the nonlinear processor (NLP) stronger. What the
NLP essentially does is say, “If the sample is that quiet anyway, make the volume
level about 0.”

Disable echo cancellation

When echo cancellation is enabled in Asterisk, it is possible to disable it by sending a
2100-Hz tone at the beginning of a call. If you do not want Asterisk to disable echo
cancellation even when it detects the echo cancel disable tone, uncomment the fol-
lowing line:

/* #define NO_ECHOCAN_DISABLE */

Fax machines and modems use the 2100-Hz tone during negotiation, and Asterisk
monitors for this tone during call setup.

Enable HDLC

When using the Zaptel driver with T1 or E1 hardware, you can configure Zaptel to
use TDM channels for data instead of voice. To enable HDLC functionality in the
drivers, uncomment the following line:

/* #define CONFIG_ZAPATA_NET */

For this change to be meaningful, you must also use the sethdlc utility and perform
some configuration in zapata.conf.

Enable ZapRAS

You can also make use of the ZapRAS program to turn Asterisk into a Remote Access
Server (RAS) for use with your ISDN connections. To enable this functionality, you
must uncomment the following line from within the zconfig.h file:

/* #define CONFIG_ZAPATA_PPP */

,ch03.20288 Page 39 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Installing Asterisk

You must also patch Asterisk and configure a PPP daemon, so be aware that this task
is nontrivial.

Enable Zaptel’s watchdog

You can tell Zaptel to monitor the status of interfaces via its built-in “watchdog.” It
will check if the interfaces stop taking interrupts or otherwise misbehave. If this hap-
pens, the hardware will automatically be restarted. To enable the watchdog, uncom-
ment this line:

/* #define CONFIG_ZAPTEL_WATCHDOG */

Set default tone zone

The tone zone info option is used to select which set of tones (e.g., dial tone, busy
indication, ring tone, stutter, etc.), as defined in the zonedata.c file, should be used as
the default. The zonedata.c file contains the frequencies and patterns that Asterisk
uses to communicate on the PSTN networks in various countries and to signal con-
nected telephones. The default tone zone (0) is used to indicate North American sig-
naling frequencies. Other tone zones include Australia (1), France (2), Japan (7),
Taiwan (14), and many others. You can change the default on the following line:

#define DEFAULT_TONE_ZONE 0

Enable CAC ground start signaling

Some devices, such as the FXO ports on a Carrier Access Corporation (CAC) chan-
nel bank, have nonstandard FXS ground start signaling start states (A=low, B=low).
You can configure the drivers to use this state by removing the comment tags around
the following line:

/* #define CONFIG_CAC_GROUNDSTART */

TDM400P Revision H PCI ID workaround

If you happen to be using an older TDM400P Revision H card, you may find that it
sometimes forgets its PCI ID. To make the wctdm driver essentially match all subven-
dor IDs, uncomment the following line:

/* #define TDM_REVH_MATCHALL */

This may be required when using older revisions of TDM400P cards with newer ver-
sions of Asterisk, due to a change in the subvendor ID code. This has been known to
cause the following type of error when loading the wctdm module:

ZT_CHANCONFIG failed on channel 12: No such device or address (6)

Uncommenting the #define line above should resolve this problem.

,ch03.20288 Page 40 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 41

Passing Module Parameters to Configure Zaptel
Some of the Zaptel options can also be enabled when loading the module, by passing
module parameters to the wctdm driver. You can list these parameters at load time (as
opposed to statically changing them in the zconfig.h file) with the modinfo command:

modinfo -p wctdm
debug int
loopcurrent int
robust int
_opermode int
opermode string
timingonly int
lowpower int
boostringer int
fxshonormode int

You then pass the module parameters to the modprobe command. For example, you
can use the following command to activate the boostringer parameter when the
module is loaded, instead of statically defining its use with #define BOOST_RINGER in
the zconfig.h file:

modprobe wctdm boostringer=1

Another common parameter to pass to a module is opermode. By passing opermode to
the wctdm driver, you can configure the TDM400P to better deal with line imped-
ances for your country. opermode accepts a two-letter country code as its argument.

Compiling libpri
Compiling and installing libpri follows the same pattern as described above for zap-
tel. libpri is used by various makers of Time Division Multiplexing (TDM) hardware,
but even if you don’t have the hardware installed it is safe to compile and install this
library. You must compile and install libpri before Asterisk, as it will be detected and
used when Asterisk is compiled. Here are the commands (replace version with your
version of libpri):

cd /usr/src/libpri-version
make clean
make
make install

Compiling Asterisk
Once you’ve compiled and installed the zaptel and libpri packages (if you need them),
you can move on to Asterisk. This section walks you through a standard installation
and introduces some of the alternative make arguments that you may find useful. We’ll
also look at how you can edit the Makefile to optimize the compilation of Asterisk.

,ch03.20288 Page 41 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Installing Asterisk

Standard Installation
Asterisk is compiled with gcc through the use of the GNU make program. Unlike
many other programs, there is no need to run a configuration script for Asterisk. To
get started compiling Asterisk, simply run the following commands (replace version
with your version of Asterisk):

cd /usr/src/asterisk-version
make clean
make
make install
make samples

Be aware that compile times will vary between systems. On a current-generation pro-
cessor, you shouldn’t need to wait more than five minutes. At Astricon, someone
reported successfully compiling Asterisk on a 133-MHz Pentium, but it took approx-
imately five hours. You do the math.

Run the make samples command to install the default configuration files. Installing
these files (instead of configuring each file manually) will allow you to get your Aster-
isk system up and running much faster. Many of the default values are fine for Aster-
isk. Files that require editing will be explained in future chapters.

If you already have configuration files installed in /etc/asterisk/ when
you run the make samples command, .old will be appended to the end
of each of your current configuration files—for example, extensions.
conf will be renamed extensions.conf.old. Be careful, though, because if
you run make samples more than once you will overwrite your original
configuration files!

The sample configuration files can also be found in the configs/ subdi-
rectory within your Asterisk sources directory.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directo-
ries, you may wish to run the make config command as well. This will install the
startup scripts and configure the system (through the use of the chkconfig com-
mand) to execute Asterisk automatically at startup.

Alternative make Arguments
There are several other make arguments that you can pass at compile time. While
some of these will be discussed here, the remainder are used internally within the file
and really have no bearing or use for the end user. (Of course, new functions may
have been added, so be sure to check the Makefile for other options.)

Let’s take a look at some useful make arguments.

,ch03.20288 Page 42 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 43

make clean

The make clean command is used to remove the compiled binaries from within the
source directory. This command should be run before you attempt to recompile or, if
space is an issue, if you would like to clean up the files.

make update

This command is used to update the existing code from the Digium CVS server. If you
downloaded the source code from the FTP server, you will receive an error stating so.

A common problem that you may find if you update with the cvs
update command is that when you then do a show version at the Aster-
isk command-line interface (CLI), your version does not appear to
have been updated. This problem can be resolved by removing the
hidden .version file within the Asterisk source code directory before
recompiling, or by using the make update command (which will
remove the file for you).

make upgrade

If you run the make install command to install Asterisk after using the make update
command to update from CVS, the .version file will not be updated. If you do not
want to manually delete the .version file before running make and make install, you
can use the make upgrade command instead.

make webvmail

The Asterisk Web Voicemail script is used to give a graphical interface to your voice-
mail account, allowing you to manage and interact with your voicemail remotely
from a web browser.

When you run the make webvmail command, the Asterisk Web Voicemail script will
be placed into the cgi-bin/ directory of your HTTP daemon. If you have specific poli-
cies with respect to security, be aware that it uses a setuid root Perl script. This
command will install only on a Red Hat or Fedora box, as other distributions may
have different paths to their cgi-bin/ directories. (This, of course, can be changed by
editing the Makefile.)

make progdocs

This command will create documentation using the doxygen software from com-
ments placed within the source code by the developers. You must have the appropri-
ate doxygen software installed on your system in order for this to work. Note that
doxygen assumes that the source code is well documented, which, sadly, is not
always the case.

,ch03.20288 Page 43 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Installing Asterisk

make mpg123

Asterisk uses the mpg123 program to stream MP3s during the use of Music on Hold
(MoH). Because Asterisk only works with mpg123 v0.59r, this shortcut will determine
if the correct version of mpg123 is installed on your system and, if not, will attempt to
download, extract, and compile it for you. Be aware that newer versions will not work,
and some distributions even symbolically link mpg321 and mpg123, which are entirely
different programs. If you run the make install command after running this com-
mand, Asterisk will detect the directory and install it for you as well.

make config

The make config command will install Red Hat–style initialization scripts, if the /etc/
rc.d/init.d or /etc/init.d directories are found to exist. If they do exist, the scripts are
installed with file permissions equal to 755. If the script detects that /etc/rc.d/init.d/
exists, the chkconfig --add asterisk command will also be run to cause Asterisk to
be started automatically at boot time. This is not the case, however, with distribu-
tions that only use the /etc/init.d/ directory. Running make config will not do any-
thing to an already running Asterisk process, or start one if it’s not running.

This script currently is only really useful on a Red Hat–based system, although ini-
tialization scripts are available for other distributions (such as Gentoo, Mandrake,
and Slackware) in the ./contrib./init.d/ directory of your Asterisk source directory.

Editing the Makefile
At the top of the Makefile contained within the Asterisk source directory are several
options for optimizing the compilation of Asterisk. You can enable GSM codec opti-
mizations (with the use of MMX instructions), disable configuration file overwrites,
add extra debugging information, change Asterisk’s installation and staging directo-
ries, and modify which type of processor you are compiling for. While you may never
edit or require any of these options, they are mentioned here for completeness.

Enabling GSM optimizations

Uncomment the following line in your Asterisk Makefile to enable GSM codec opti-
mizations on x86 CPU architectures that support MMX instructions:

#K6OPT = -DK6OPT

This includes newer Pentium processors, Pentium Pros, and the AMD K6 and K7
processors; however, you may not want to enable MMX support unless you have a
true Intel processor, as problems have been reported with the MMX instructions on
non-Intel processors.

,ch03.20288 Page 44 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 45

Disabling configuration file overwrites

By default, Asterisk will overwrite your configuration files if you run make samples
more than once. To change this behavior, change the y in the line below to n:

OVERWRITE=y

Enabling debug profiling information

Debug symbols allow you to do symbolic debugging. The profiling information (-pg)
flag will produce a file when you run Asterisk that can be processed in order to
obtain information about how long (relatively) Asterisk spends in each function. Use
of the –pg flag is not recommended for a normal build, but it may be useful during
development. To enable profiling information, replace the –g in the following line
with –pg:

DEBUG=-g

Specifying where to install Asterisk after compiling

You can change the directory where Asterisk is installed by specifying a path on the
following line:

INSTALL_PREFIX=

Changing the staging directory

The staging directory is where Asterisk temporarily copies its files during the install
process. You may want the files to be copied to a directory such as /tmp/asterisk/. If
no staging directory is specified (the default), Asterisk will use the source directory.
To specify a staging directory, enter the desired directory on this line:

DESTDIR=

Compiling on VIA motherboards

On VIA-based motherboards, you need to set the processor to i586. If Asterisk
detects the processor as i686, you may get random core dumps. To force Asterisk to
compile using i586, remove the comment from the following PROC line in the Make-
file (line 81, at the time of this writing):

Pentium & VIA processors optimize
PROC=i586

Using Precompiled Binaries
While the documented process of installing Asterisk expects you to compile the
source code yourself, there are Linux distributions (such as Debian) that include pre-
compiled Asterisk binaries. Failing that, you may be able to install Asterisk with the
package managers that those distributions of Linux provide (such as apt-get for

,ch03.20288 Page 45 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Installing Asterisk

Debian and portage for Gentoo). However, you may also find that many of these pre-
built binaries are quite out of date and do not follow the same furious development
cycle as Asterisk.

Finally, there do exist basic, precompiled Asterisk binaries that can be downloaded
and installed in whatever Linux distribution you have chosen. However, the use of
precompiled binaries doesn’t really save much time, and we have found that compil-
ing Asterisk with each install is not a very cumbersome task. We believe that the best
way to install Asterisk is to compile from the source code, so we won’t discuss pre-
built binaries very much in this book. In the next chapter, we’ll look at how to ini-
tially configure Asterisk and several kinds of channels.

Installing Additional Prompts
The asterisk-sounds package contains many useful professionally recorded prompts.
It is highly recommended that you install it now, as we will be using some of the
prompts from this package in later chapters. To do so, run the following commands:

cd /usr/src/asterisk-sounds
make install

Updating Your Source Code
Instead of deleting the sources and downloading the entire tree every time you want
to update, you can update just the files that have changed since the last revision. To
do this, change into the directory containing the files you want to update and run the
make update command:

Other Useful Add-ons
The asterisk-addons package contains code to allow the storage of Call Detail Records
(CDRs) to a MySQL database and to natively play MP3s, as well as an interpreter for load-
ing Perl code into memory for the life of an Asterisk process. Programs are placed into
asterisk-addons when there are licensing issues preventing them from being implemented
directly into the Asterisk source code, or when they are not yet ready for primetime.

The g729/ directory contains the code and registration program for the proprietary
G.729 codec. Even if your end devices have the G.729 codec installed, in order to allow
the phones to communicate with Asterisk using G.729 (e.g., in voicemail or to allow
attended transfers), you must purchase a license. Licenses for the codec can be pur-
chased online from Digium and activated with the registration program contained in
the g729/ directory.

,ch03.20288 Page 46 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Compiling Issues | 47

cd /usr/src/asterisk/
make update
make clean
make upgrade

Note that this will work only with code obtained via the CVS method (see “make
update,” earlier in this chapter). The make upgrade command is used only in the
Asterisk source directory. In other directories, use make install.

Common Compiling Issues
There are many common compiling issues that users often run into. Here are some of
the more common problems, and how to resolve them.

Asterisk
First, let’s take a look at some of the errors you may encounter when compiling
Asterisk.

C compiler cannot create executables

If you receive the following error while attempting to compile Asterisk, you must
install the gcc compiler and its dependencies:

checking whether the C compiler (gcc) works... no
configure: error: installation or configuration problem: C compiler cannot create
executables.
make: *** [editline/libedit.a] Error 1

The following packages are required for gcc:

• gcc

• glibc-kernheaders

• cpp

• binutils

• glibc-headers

• glibc-devel

These can be installed manually, by copying the files off of your distribution disks, or
through the yum package manager, with the command yum install gcc.

bison: command not found

The following error may be encountered if the bison parser, which is required for
parsing expressions in the extensions.conf file, is not found:

bison ast_expr.y –name-prefix=ast_yy –o ast_expr.c
make: bison: Command not found
make: *** [ast_expr.c] Error 127

,ch03.20288 Page 47 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Installing Asterisk

The following files are required in order to install Asterisk; they can be installed with
the yum install bison command:

• bison

• m4

/usr/bin/ld: cannot find –lssl

The OpenSSL development packages are required by Asterisk within the res_crypto.so
module for RSA key checks performed by the IAX2 protocol. If the OpenSSL devel-
opment packages are not installed, the following error will occur:

/usr/bin/ld: cannot find –lssl
collect2: ld returned 1 exit status
make: *** [asterisk] Error 1

To install the OpenSSL development library, you’ll require the following dependencies:

• openssl-devel

• e2fsprogs-devel

• zlib-devel

• krb5-devel

• krb5-libs

You can use the yum install openssl-devel command to install these files.

rpmbuild: command not found

To use the make rpm command, you must have the Red Hat Package Manager (RPM)
development package installed. The following error will be encountered if it is
absent:

make[1]: Leaving directory `/usr/src/asterisk-1.0.3'
/bin/sh: line 1: rpmbuild: command not found
make: *** [_ _rpm] Error 127

You can install the build environment with yum install rpmbuild.

Zaptel
You may also run into errors when compiling Zaptel. Here are some of the most
commonly occurring problems, and what to do about them.

make: cc: Command not found

You will receive the following error if you attempt to build Zaptel without the gcc
compiler installed:

make: cc: Command not found
make: *** [gendigits.o] Error 127

,ch03.20288 Page 48 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Compiling Issues | 49

Be sure to install gcc and its dependencies. For more information, see “C compiler
cannot create executables” in the previous section.

FATAL: Module wctdm/fxs/fxo not found

The TDM400P cards require the PCI bus to be Version 2.2. If you attempt to load
the Zapata telephony drivers with an older version, you may get the following errors:

• When attempting to load the wctdm driver, you may see this error:
FATAL: Module wctdm not found

• When attempting to load the wctdm or wcfxo driver, you may see an error such
as this:

ZT_CHANCONFIG failed on channel 1: No such device or address (6)
FATAL: Module wctdm not found

The only way to resolve these errors is to use a newer motherboard that supports PCI
Version 2.2.

You may also encounter these errors if the power has not been
attached to the Molex connector found on the TDM400P card.

Unresolved symbol link when loading ztdummy

The ztdummy driver requires that a UHCI USB controller be available on Linux 2.4
kernels (the USB controller is not a requirement on Linux 2.6 kernels, because they
are capable of generating the 1-kHz timing reference). There exists a secondary kind
of controller, known as OHCI, which is not compatible with the ztdummy driver. If
the UHCI USB controller is not accessible on Linux 2.4 kernels, the following error
will occur:

/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol unlink_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol alloc_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol delete_desc
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_devices
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_interrupt
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol fill_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol insert_td_horizontal
/lib/modules/2.4.22/misc/ztdummy.o: insmod /lib/modules/2.4.22/misc/ztdummy.o failed
/lib/modules/2.4.22/misc/ztdummy.o: insmod ztdummy failed

,ch03.20288 Page 49 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Installing Asterisk

You can verify that you have the correct style of USB controller and its associated
drivers with the lsmod command:

lsmod
Module Size Used by
usb_uhci 26412 0
usbcore 79040 1 [hid usb-uhci]

As you can see in the example above, you are looking to make sure that the usbcore
and usb_uhci modules are loaded. If these modules are not loaded, be sure that USB
has been activated within your BIOS and that the modules exist and are being
loaded.

If the USB drivers are not loaded, you can still check which type of USB controller
you have with the dmesg command:

dmesg | grep –i usb

To verify that you indeed have a UHCI USB controller, look for the following lines:

uhci_hcd 0000:00:04.2: new USB bus registered, assigned bus number 1
hub 1-0:1.0: USB hub found
uhci_hcd 0000:00:04.3: new USB bus registered, assigned bus number 2
hub 2-0:1.0: USB hub found

Depmod errors during compilation

If you experience depmod errors during compilation, you more than likely don’t have
a symbolic link to your Linux kernel sources. If you don’t have your Linux kernel
sources installed, retrieve the sources for your installed kernel, install them, and cre-
ate a symbolic link against /usr/src/linux-2.4. The following is an example of a depmod
error:

depmod: *** Unresolved symbols in /lib/modules/2.4.22/kernel/drivers/block/loop.o

Loading Zaptel Modules
In this section, we’ll take a quick look at how to load the zaptel and ztdummy mod-
ules. The zaptel module does not require any configuration if it’s being used only for
the ztdummy module. If you plan on loading the ztdummy module as your timing
source (and thus, you will not be running any PCI hardware in your system), now is
a good time to load both drivers.

Systems Running udevd
In the early days of Linux, the system’s /dev/ directory was populated with a list of
devices with which the system could potentially interact. At the time, nearly 18,000
devices were listed. That all changed when devfs was released, allowing dynamic
creation of devices that are active within the system. Some of the recently released

,ch03.20288 Page 50 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Loading Zaptel Modules | 51

distributions have incorporated the udev daemon into their systems to dynamically
populate /dev/ with device nodes.

To allow Zaptel and other device drivers to access the PCI hardware installed in your
system, you must add some rules. Using your favorite text editor, open up your
udevd rules file. On Fedora Core 3, for example, this file is located at /etc/udev/rules.
d/50-udev.rules. Add the following lines to the end of your rules file:

Section for zaptel device
KERNEL="zapctl", NAME="zap/ctl"
KERNEL="zaptimer", NAME="zap/timer"
KERNEL="zapchannel", NAME="zap/channel"
KERNEL="zappseudo", NAME="zap/pseudo"
KERNEL="zap[0-9]*", NAME="zap/%n"

Save the file and reboot your system for the settings to take effect.

Loading Zaptel
The zaptel module must be loaded before any of the other modules are loaded and
used. Note that if you will be using the zaptel module with PCI hardware, you must
configure /etc/zaptel.conf before you load it. (We will discuss how to configure zaptel.
conf for use with hardware in Chapter 4.) If you are using zaptel only to access
ztdummy, you can load it with the modprobe command, as follows:

modprobe zaptel

If all goes well, you shouldn’t see any output. To verify that the zaptel module loaded
successfully, use the lsmod command. You should be returned a line showing the
zaptel module and the amount of memory it is using:

lsmod | grep zaptel
zaptel 201988 0

Loading ztdummy
The ztdummy module is an interface to a device that provides timing, which in turn
allows Asterisk to provide timing to various applications and functions that require
it. Use the modprobe command to load the ztdummy module after zaptel has been
loaded:

modprobe ztdummy

If ztdummy loads successfully, no output will be displayed. To verify that ztdummy is
loaded and is being used by zaptel, use the lsmod command. The following output is
from a computer running the 2.6 kernel:

lsmod | grep ztdummy
Module Size Used by
ztdummy 3796 0
zaptel 201988 1 ztdummy

,ch03.20288 Page 51 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Installing Asterisk

If you happen to be running a 2.4 kernel-based computer, your output from lsmod
will show that ztdummy is using the usb-uhci module:

lsmod | grep ztdummy
Module Size Used by
ztdummy 3796 0
zaptel 201988 0 ztdummy
usb-uhci 24524 0 ztdummy

Loading libpri
The libpri libraries do not need to be loaded like modules. Asterisk looks for libpri at
compile time and configures itself to use the libraries if they are found.

Loading Asterisk
Asterisk can be loaded in a variety of ways. The easiest way is to start Asterisk by
running the binary file directly from the Linux command-line interface. If you are
running a system that uses the init.d scripts, you can easily start and restart Asterisk
that way as well. However, the preferred way of starting Asterisk is via the safe_aster-
isk script.

CLI Commands
The Asterisk binary is, by default, located at /usr/sbin/asterisk. If you run /usr/sbin/
asterisk, it will be loaded as a daemon. There are also a few switches you should be
aware of that allow you to (re)connect to the Asterisk CLI, set the verbosity of CLI
output, and allow core dumps if Asterisk crashes (for debugging with gdb). To
explore the full range of options, run Asterisk with the –h switch:

/usr/sbin/asterisk –h

Here is a list of the most commonly used options:

-c
Console. This allows you to connect to the Asterisk CLI.

-v
Verbosity. This is used to set the amount of output for CLI debugging.

-g
Core dump. If Asterisk were to crash unexpectedly, this would cause a core file
to be created for later tracing with gdb.

-r
Remote. This is used to reconnect remotely to an already running Asterisk pro-
cess. (The process is remote from the standpoint of the console connecting to it

,ch03.20288 Page 52 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Loading Asterisk | 53

but is actually a local process on the machine. This has nothing to do with
connecting to a remote process over a network using a protocol such as IP, as
this is not supported.)

-rx "restart now"
Execute. Using this command in combination with –r allows you to execute a
CLI command without having to connect to the CLI and type it manually.

Let’s look at some examples. To start Asterisk and connect to the CLI with a verbos-
ity level of 3, use the following command:

/usr/sbin/asterisk –cvvv

If the Asterisk process is already running (for example, if you started Asterisk with
/usr/sbin/asterisk), instead use the reconnect switch, like so:

/usr/sbin/asterisk –vvvr

If you want Asterisk to dump a core file after a crash, you can use the –g switch when
starting Asterisk:

/usr/sbin/asterisk –g

To execute a command without connecting to the CLI and typing it (perhaps for use
within a script), you can use the –x switch in combination with the –r switch:

/usr/sbin/asterisk –rx "restart now"

If you are experiencing crashes and would like to output to a debug file, use the fol-
lowing command:

/usr/sbin/asterisk –vvvvvvvvvc | tee /tmp/debug.log

Red Hat–Style Initialization Script
If you ran the make config command earlier (or manually copied the initialization
scripts), you can start and restart Asterisk with the following commands:

/etc/rc.d/init.d/asterisk start
/etc/rc.d/init.d/asterisk stop

The safe_asterisk Script
The main purpose of the safe_asterisk script is to dump a core file if Asterisk fails and
to automatically restart it. There is also a notify option within the script, which, if
set, will send an email letting you know that Asterisk died unexpectedly. An added
benefit of the script is that it will load the Asterisk CLI on terminal interface 9 (by
default; this is configurable), so you can easily switch to that window to monitor
your Asterisk system.

,ch03.20288 Page 53 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Installing Asterisk

The default location of the safe_asterisk script is /usr/sbin/safe_asterisk, and it can be
executed as such. Let’s review the various options contained in the safe_asterisk
script:

CLIARGS="$*" # Grab any args passed to safe_asterisk
TTY=9 # TTY (if you want one) for Asterisk to run on
CONSOLE=yes # Whether or not you want a console
#NOTIFY=ben@alkaloid.net # Email address for crash notifications

The first line simply allows you to pass arguments to the safe_asterisk script from the
Linux CLI; it should not be edited directly. TTY=9 specifies the Linux console on
which to run the Asterisk CLI output. You can disable this feature by specifying
CONSOLE=no. If you would like to be notified if Asterisk dies suddenly and requires a
restart, uncomment the NOTIFY line and replace ben@alkaloid.net with your email
address. Note that the crash notifications are sent with the mail command, so your
system must be set up to process and send email.

Directories Used by Asterisk
Asterisk uses several directories on a Linux system to manage the various aspects of
the system, such as voicemail recordings, voice prompts, and configuration files.
This section discusses the necessary directories, all of which are created during
installation and configured in the asterisk.conf file.

/etc/asterisk/
The /etc/asterisk/ directory contains the Asterisk configuration files. One file, how-
ever—zaptel.conf—is located in the /etc/ directory. The Zaptel hardware was origi-
nally designed by Jim Dixon of the Zapata Telephony Group as a way of bringing
reasonable and affordable computer telephony equipment to the world. Asterisk
makes use of this hardware, but any other software can also make use of the Zaptel
hardware and drivers. Consequently, the zaptel.conf configuration file is not directly
located in the /etc/asterisk/ directory.

/usr/lib/asterisk/modules/
The /usr/lib/asterisk/modules/ directory contains all the Asterisk loadable modules.
Within this directory are the various applications, codecs, formats, and channels
used by Asterisk. By default, Asterisk loads all of these modules at startup. You can
disable any modules you are not using in the modules.conf file, but be aware that cer-
tain modules are required by Asterisk or are dependencies of other modules.
Attempting to load Asterisk without these modules will cause an error at startup.

,ch03.20288 Page 54 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Directories Used by Asterisk | 55

/var/lib/asterisk
The /var/lib/asterisk/ directory contains the astdb file and a number of subdirecto-
ries. The astdb file contains the local Asterisk database information, which is some-
what like the Microsoft Windows Registry. The Asterisk database is a simple
implementation based on v1 of the Berkeley database. The db.c file in the Asterisk
source states that this version was chosen for the following reason: “DB3 implemen-
tation is released under an alternative license incompatible with the GPL. Thus in
order to keep Asterisk licensing simplistic, it was decided to use version 1 as it is
released under the BSD license.”

The subdirectories within /var/lib/asterisk/ include:

agi-bin/
The agi-bin/ directory contains your custom scripts, which can interface with
Asterisk via the various built-in AGI applications. For more information about
AGI, see Chapter 8.

 firmware/
The firmware/ directory contains firmware for various Asterisk-compatible
devices. It currently contains only the iax/ subdirectory, which holds the binary
firmware image for Digium’s IAXy.

images/
Applications that communicate with channels supporting graphical images look
in the images/ directory. Most channels do not support the transmission of
images, so this directory is rarely used. However, if more devices that support
and make use of graphical images are released, this directory will become more
relevant.

keys/
Asterisk can use a public/private key system to authenticate peers connecting to
your box via an RSA digital signature. If you place a peer’s public key in your
keys/ directory, that peer can be authenticated by channels supporting this
method (such as the IAX2 channels). The private key is never distributed to the
public. The reverse is also true: you can distribute your public key to your peers,
allowing you to be authenticated with the use of your private key. Both the pub-
lic and private keys—ending in the .pub and .key file extensions, respectively—
are stored in the keys/ directory.

mohmp3/
When you configure Asterisk for Music on Hold, applications utilizing this fea-
ture look for their MP3 files in the mohmp3/ directory. Asterisk is a bit picky
about how the MP3 files are formatted, so you should use constant bitrate (CBR)
encoding and strip the ID3 tags from your files.

,ch03.20288 Page 55 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Installing Asterisk

 sounds/
All of the available voice prompts for Asterisk reside in the sounds/ directory.
The contents of the basic prompts included with Asterisk are in the sounds.txt
file located in your Asterisk source code directory. Contents of the additional
prompts are located in the sounds-extra.txt file in the directory to which you
extracted the asterisk-sounds package earlier in this chapter.

/var/spool/asterisk/
The Asterisk spool directory contains several subdirectories, including outgoing/,
qcall/, tmp/, and voicemail/ (see Figure 3-2). Asterisk monitors the outgoing and qcall
directories for text files containing call request information. These files allow you to
generate a call simply by copying or moving the correctly structured file into the out-
going/ directory.

The old (now deprecated) qcall method of generating calls utilized a single line of
text within the call file. Call files for use within the qcall directory took the form of:

Dialstring Caller-ID Extension Maxsecs [Identifier] [Required-response]

This rather limited what you could do with the call file, and what kinds of informa-
tion you could pass to Asterisk. Thus, a new spooling method was developed in
Asterisk, using the outgoing directory. Call files being placed into this directory can

Figure 3-2. /var/spool/asterisk/ directory structure

var

spool

asterisk

outgoing

qcall

tmp

voicemail

,ch03.20288 Page 56 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 57

contain much more valuable information, such as the Context, Extension, and Prior-
ity where the answered call should start, or simply the application and its argu-
ments. You can also set variables and specify an account code for Call Detail
Records. More information about the use of call files is presented in Chapter 9.

The tmp/ directory is used, funny enough, to hold temporary information. Certain
applications may require a place to write files to before copying the complete files to
their final destinations. This prevents two processes from trying to write to and read
from a file at the same time.

All voicemail and user greetings are contained within the voicemail/ directory. Exten-
sions configured in voicemail.conf that have been logged into at least once are cre-
ated as subdirectories of voicemail/.

/var/run/
The /var/run/ directory contains the process ID (pid) information for all active pro-
cesses on the system, including Asterisk (as specified in the asterisk.conf file). Note
that /var/run/ is OS-dependent and may differ.

/var/log/asterisk/
The /var/log/asterisk/ directory is where Asterisk logs information. You can control
the type of information being logged to the various files by editing the logger.conf file
located in the /etc/asterisk/ directory. Basic configuration of the logger.conf file is cov-
ered in Appendix E.

/var/log/asterisk/cdr-csv
The /var/log/asterisk/cdr-csv directory is used to store the CDRs in comma-separated
value (CSV) format. By default information is stored in the Master.csv file, but indi-
vidual accounts can store their own CDRs in separate files with the use of the
accountcode option (see Appendix A for more information).

Conclusion
In this chapter, we have reviewed the procedures for obtaining, compiling, and
installing Asterisk and the associated packages. In the following chapter, we will
touch on the initial configuration of your system with regard to various communica-
tions channels, such as analog devices attached to FXS and FXO ports, SIP channels,
and IAX2 endpoints.

,ch03.20288 Page 57 Wednesday, August 31, 2005 4:54 PM

