é ,appd.23268 Page 301 Wednesday, August 31, 2005 5:02 PM

*

APPENDIXD

Configuration Files

This appendix contains a reference to the configuration files not cov-
ered in the previous appendixes. If you are looking for VoIP channel
W configurations, refer to Appendix A. For a dialplan reference, you’ll
" want to use Appendix B.

A configuration file is required for each Asterisk module you wish to use. These .conf
files contain channel definitions, describe internal services, define the locations of
other modules, or relate to the dialplan. You do not need to configure all of them to
have a functioning system, only the ones required for your configuration. Although
Asterisk ships with samples of all of the configuration files, it is possible to start
Asterisk without any of them. This will not provide you with a working system, but
it clearly demonstrates the modularity of the platform.

If no .conf files are found, Asterisk will make some decisions with respect to mod-
ules. For example, the following steps are always taken:

The Asterisk Event Logger is loaded, and events are logged to /var/log/asterisk/
event_log.

Manager actions are registered.
The PBX core is initialized.
The RTP port range is allocated from 5,000 through 31,000.

Several built-in applications are loaded, such as Answer (), Background(), GotoIf(),
NoOp(), and Set().

The dynamic loader is started—this is the engine responsible for loading mod-
ules defined in modules.conf.

This appendix starts with an in-depth look at the modules.conf configuration file.
We’'ll then briefly examine all the other files that you may need to configure for your
Asterisk system.

301

ﬁ

*@%

é ,appd.23268 Page 302 Wednesday, August 31, 2005 5:02 PM

modules.conf

The modules.conf file controls which modules are loaded or not loaded at Asterisk
startup. This is done through the use of the load => or noload => constructs.

This file is a key component to building a secure Asterisk installation:
best practice suggests that only required modules be loaded.
N

The modules.conf file always starts with the [modules] header. The autoload statement
tells Asterisk whether to automatically load all modules contained within the modules
directory or to load only those modules specifically defined by load => statements. We
recommend you manually load only those modules you need, but many people find it
easier to let Asterisk attempt to autoload whatever it finds in /usr/lib/asterisk/modules.
You can then exclude certain modules with noload => statements.

Here’s a sample modules.conf file:

[modules]
autoload=no ; set this to yes and Asterisk will load any
; modules it finds in /usr/lib/asterisk/modules

load => res_adsi.so

load => pbx_config.so ; Requires: N/A

load => chan_iax2.so ; Requires: res crypto.so, res features.so

load => chan_sip.so ; Requires: res_features.so

load => codec_alaw.so ; Requires: N/A

load => codec_gsm.so ; Requires: N/A

load => codec_ulaw.so ; Requires: N/A

load => format_gsm.so ; Requires: N/A

load => app_dial.so ; Requires: res features.so, res musiconhold.so

Since we assume Asterisk is built on Linux, all the module names we use end in a .so
extension. However, this may not be the case if you have built Asterisk on a different
operating system.

As of this writing, there are eight module types: resources, applications, Call Detail
Record database connectors, channels, codecs, formats, pbx modules, and standalone
functions. Let’s take a look at each of them.

Resources

A resource provides a connection to a static repository of a particular type of infor-
mation, such as a unique regional requirement or a library of constant elements. This
information must be configurable for each system, but once loaded it doesn’t need to
change in the course of normal operations.

For each resource below, we have outlined the applications and features it provides
to other Asterisk modules We’ve indicated the .conf file used to define the resource,

302 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 303 Wednesday, August 31, 2005 5:02 PM

where needed; if no file is listed, then a configuration file isn’t required. The resource
modules are:

res_adsi.so
Configuration file: adsi.conf
Provides: ADSI functions to ADSIProg() and Voicemail()

res_agi.so
Provides: DeadAGI(), EAGI(), AGI()

res_crypto.so
Provides: Loads public and private keys located in /var/lib/asterisk/keys/
res_features.so
Configuration file: features.conf
Provides: ParkedCall(), Park()
res_indications.so
Configuration file: indications.conf
Provides: Playtones(), StopPlaytones()
res_monitor.so

Provides: Monitor(), StopMonitor(), ChangeMonitor(), action Monitor, action
StopMonitor, action ChangeMonitor

res_musiconhold.so
Configuration file: musiconhold.conf

Provides: MusicOnHold(), WaitMusicOnHold(), SetMusicOnHold(),
StartMusicOnHold(), StopMusicOnHold()
res_odbc.so

Configuration file: res_odbc.conf

Provides: Connectivity information to the ODBC" driver—the purpose is to store
configuration file information in a database and retrieve that information from
the database; however, a reload is required to make changes take effect

Applications

If you build an Asterisk dialplan of any size, you are going to use at least one—and
more likely dozens—of applications.t If an application is never going to be used, it is
not strictly required that it be loaded. For performance-challenged systems (or if you

* Open DataBase Connectivity (ODBC) is a standard by which access to a database can be provided.

1 To be of any use, a self-contained dialplan will always require several applications. Some folks, however, use
the dialplan for no other purpose than to pass control to an external application. In this case, it would be
possible to have the dialplan use no application other than AGI(). We’re not recommending that you do this,
but again, it demonstrates Asterisk’s enormous flexibility.

modules.conf | 303

4~ ~4/o

é ,appd.23268 Page 304 Wednesday, August 31, 2005 5:02 PM

*

just like to keep it lean), you may elect to load only those applications that are refer-
enced in your dialplan.

For each application module, we will define any resource requirements and name the
applications that the module provides. Unless we have stated otherwise, the applica-
tion does not require a configuration file or any other modules. The available appli-
cation modules are:

app_adsiprog.so
Requires: res_adsi.so
Provides: ADSIProg()

app_alarmreceiver.so

Provides: AlarmReceiver ()
app_authenticate.so

Provides: Authenticate()
app_cdr.so

Provides: NoCDR()
app_chanisavail.so

Provides: ChanIsAvail()
app_chanspy.so

Provides: ChanSpy()

app_controlplayback.so
Provides: ControlPlayback()

app_curl.so
Provides: Curl()
app_cut.so
Provides: Cut()
app_db.so
Provides: DBget(), DBput(), DBdel(), DBdeltree()
app_dial.so
Requires: res_features.so, res_musiconhold.so
Provides: Dial(), RetryDial()
app_dictate.so
Provides: Dictate()
app_directory.so
Provides: Directory()
app_disa.so
Provides: DISA()

app_dumpchan.so
Provides: DumpChan()

304 | AppendixD: Configuration Files

*@%

é ,appd.23268 Page 305 Wednesday, August 31, 2005 5:02 PM

*

app_echo.so
Provides: Echo()

app_enumlookup.so
Configuration file: enum.conf

Provides: EnumLookup ()

app_eval.so

Provides: Eval()
app_exec.so

Provides: Exec()
app_festival.so

Provides: Festival()
app_forkcdr.so

Provides: ForkCDR()
app_getcpeid.so

Requires: res_adsi.so

Provides: GetCPEID()

app_groupcount.so
Provides: GetGroupCount(), SetGroup(), CheckGroup(), GetGroupMatchCount()

app_hasnewvoicemail.so
Provides: HasVoicemail(), HasNewVoicemail()

app_ices.so

Provides: ICES()
app_image.so

Provides: SendImage()

app_lookupblacklist.so
Provides: LookupBlacklist()

app_lookupcidname.so
Provides: LookupCIDName()

app_macro.so
Provides: Macro(), MacroExit(), MacroIf()

app_math.so
Provides: Math()

app_md>5.so
Provides: MD5(), MD5Check()

app_milliwatt.so

Provides: Milliwatt()
app_mp3.so

Provides: MP3Player()

modules.conf | 305

é ,appd.23268 Page 306 Wednesday, August 31, 2005 5:02 PM

app_nbscat.so
Provides: NBScat ()

app_parkandannounce.so
Requires: res_features.so

Provides: ParkAndAnnounce()

app_playback.so
Provides: Playback()

app_privacy.so
Provides: PrivacyManager()

app_queue.so
Requires: res_features.so, res_monitor.so, res_musiconhold.so

Provides: Queue(), AddQueueMember (), RemoveQueueMember (), PauseQueueMember(),
UnpauseQueueMembex (), action Queues, action QueueStatus, action QueueAdd, action
QueueRemove, action QueuePause

app_random.so
Provides: Random()

app_read.so
Provides: Read()

app_readfile.so
Provides: ReadFile()

app_realtime.so
Provides: RealTime(), RealTimeUpdate()

app_record.so
Provides: Record()

app_sayunixtime.so
Provides: SayUnixTime(), DateTime()

app_senddtmf.so
Provides: SendDTMF()

app_sendtext.so
Provides: SendText()

app_setcallerid.so
Provides: SetCallerPres(), SetCallerID()

app_setcdruserfield.so
Provides: Set(DRUserField(), AppendCDRUserField(), action SetCDRUserField

app_setcidname.so
Provides: SetCIDName()

app_setcidnum.so
Provides: SetCIDNum()

306 | AppendixD: Configuration Files

é ,appd.23268 Page 307 Wednesday, August 31, 2005 5:02 PM

*

app_setrdnis.so
Provides: SetRDNIS()

app_settransfercapability.so
Provides: SetTransferCapability()

app_sms.so
Provides: SMS()

app_softhangup.so
Provides: SoftHangup()

app_striplsd.so
Provides: StripLSD()

app_substring.so (deprecated)
Provides: SubString()

app_system.so
Provides: System(), TrySystem()

app_talkdetect.so
Provides: BackgroundDetect()

app_test.so
Provides: TestClient(), TestServer()

app_transfer.so
Provides: Transfer()

app_txtcidname.so
Configuration file: enum.conf

Provides: TXTCIDName()

app_url.so
Provides: SendURL()

app_userevent.so
Provides: UserEvent()

app_verbose.so
Provides: Verbose()

app_voicemail.so
Configuration file: voicemail.conf

Requires: res_adsi.so

Provides: VoiceMail(), VoiceMailMain(), MailboxExists(), VMAuthenticate()
app_waitforring.so

Provides: WaitForRing()

app_waitforsilence.so
Provides: WaitForSilence()

modules.conf | 307

- .
4~ ~4/o

é ,appd.23268 Page 308 Wednesday, August 31, 2005 5:02 PM

app_while.so
Provides: While(), ExecIf(), Endwhile()

app_zapateller.so
Provides: Zapateller()

Database-Stored Call Detail Records

Asterisk normally stores Call Detail Records (CDRs) in a Comma-Separated Values
(CSV) file.” If you want CDRs to be stored in a database, you’ll need to load the
appropriate module and define the relevant .conf file.

For each module below, we state the database type it supports, and specify the con-
figuration file, if required. The CDR database connector modules are:

cdr_csv.so
Provides: CSV CDR backend

cdr_custom.so
Configuration file: cdr_custom.conf

Provides: Customizable CSV CDR backend

cdr_manager.so
Configuration file: cdr_manager.conf

Provides: Asterisk Call Manager CDR backend

cdr_odbc.sot
Configuration file: cdr_odbc.conf

Provides: ODBC CDR backend

cdr_pgsql.so
Configuration file: cdr_pgsql.conf

Provides: PostgreSQL CDR backend

Channels

Next, let’s take a look at the channel modules. For each channel module, we identify
dependencies and list the capabilities the module provides. We show the configura-
tin file, if one is required. The available modules are:

* Information stored in a text file as Comma-Separated Values can be imported into pretty much any spread-
sheet or database (yes, even stuff from Microsoft). This makes the CSV format extremely portable.

t The cdr_odbc connector could theoretically replace all of the other database-specific connectors—however,
people may prefer to use specific connectors due to performance differences, stability issues, personal pref-
erence, backward-compatibility, and so forth. Many options are available. If you are familiar with databases,
Asterisk gives you lots of choices.

308 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 309 Wednesday, August 31, 2005 5:02 PM

chan_agent.so
Configuration file: agents.conf

Requires: res_features.so, res_monitor.so, res_musiconhold.so

Provides: channel Agent, Agentlogin(), AgentCallbackLogin(),
AgentMonitorOutgoing(), action Agents

chan_features.so
Provides: channel Feature

chan_iax2.so
Configuration file: iax.conf, iaxprov.conf

Requires: res_crypto.so, res_features.so, res_musiconhold.so

Provides: channel IAX2, IAX2Provision(), function IAXPEER, action IAXPEERS,
action IAXnetstats

chan_local.so
Provides: channel Local

chan_mgcp.so
Configuration file: mgcp.conf

Requires: res_features.so
Provides: channel MGCP

chan_modem.so
Configuration file: modem.conf

Provides: channel Modem

chan_modem_aopen.so
Requires: chan_modem.so

Provides: A/Open (Rockwell Chipset) ITU-2 VoiceModem Driver

chan_modem_bestdata.so
Requires: chan_modem.so

Provides: BestData (Conexant V.90 Chipset) VoiceModem Driver

chan_modem_i4l.so
Requires: chan_modem.so

Provides: ISDN4Linux Emulated Modem Driver

chan_oss.so
Provides: channel Console (soundcard required)

chan_phone.so
Configuration file: phone.conf

Provides: channel Phone

chan_sip.so
Configuration file: sip.conf, sip_notify.conf

Requires: res_features.so

modules.conf | 309

- ad

é ,appd.23268 Page 310 Wednesday, August 31, 2005 5:02 PM

Provides: channel SIP, SIPDtmfMode(), SIPAddHeader(), SIPGetHeader(), action
SIPpeers, action SIPshowpeer, function SIP_HEADER

chan_skinny.so
Configuration file: skinny.conf

Requires: res_features.so

Provides: channel Skinny

Codecs

There are several acceptable ways to pass audio information in digital form. The for-
mulas used to encode and decode (or compress and decompress) this information
are collectively referred to as codecs. Most of Asterisk’s codecs are provided free of
license requirements; however, some (such as G.729) are encumbered by patents and
thus must be licensed before they can be used.

Asterisk will load these codecs without complaint, but if you attempt to transcode a
channel using an unlicensed codec, your calls will be dropped as soon as they connect.

Here, then, are the codec modules—if there are parameters that can be defined, they
will be configurable in the codecs.conf file:

codec_a_mu.so
Provides: translator alawtoulaw, translator ulawtoalaw

codec_adpcm.so
Configuration file: codecs.conf

Provides: translator adpcmtolin, translator lintoadpcm

codec_alaw.so
Configuration file: codecs.conf

Provides: translator alawtolin, translator lintoalaw

codec_g726.s0
Configuration file: codecs.conf

Provides: translator g726tolin, translator 1intog726

codec_gsm.so
Configuration file: codecs.conf

Provides: translator gsmtolin, translator lintogsm

codec_ilbc.so
Configuration file: not required

Provides: translator ilbctolin, translator lintoilbc

codec_lpc10.so
Configuration file: codecs.conf

Provides: translator 1pc10tolin, translator lintolpc10

310 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 311 Wednesday, August 31, 2005 5:02 PM

codec_ulaw.so
Configuration file: codecs.conf

Provides: translator ulawtolin, translator lintoulaw

Formats

Formats are essentially the same as codecs, except that they relate to handling files
instead of live media streams. If you are talking to someone, a codec (or two) will be
employed. If you are leaving a voicemail or listening to Music on Hold, a format will
be involved.

Here are the current Asterisk formats. Formats do not have associated configuration
files:

format_g723.s0
Provides: format g723sf

format_g726.s0

Provides: format g726-40, format g726-32, format g726-24, format g726-16
format_g729.s0

Provides: format g729

format_gsm.so
Provides: format gsm

format_h263.so0
Provides: format h263

format_ilbc.so

Provides: format ilbc
format_jpeg.so

Provides: format jpg

format_pcm.so
Provides: format pem

format_pcm_alaw.so
Provides: format alaw

format_sln.so
Provides: format sln

format_vox.so
Provides: format vox

format_wav.so
Provides: format wav

format_wav_gsm.so
Provides: format wav49

modules.conf | 311

é ,appd.23268 Page 312 Wednesday, August 31, 2005 5:02 PM

PBX Core Modules

The PBX modules deliver the core functionality of the system. For each module, we
show the services it provides, and list the configuration file, if one is required. At mini-
mum, config, functions, and spool are required. dundi, loopback, and realtime are needed
only if you are going to make use of their capabilities. The PBX core modules are:

pbx_config.so
Configuration file: extensions.conf
Provides: Loads dialplan into memory
pbx_dundi.so
Configuration file: dundi.conf
Requires: res_crypto.so
Provides: DUNDiLookup()

pbx_functions.so
Configuration file: not required
Provides: function CDR, function CHECK MD5, function DB, function DB_EXISTS,
function ENV, function EVAL, function EXISTS, function FIELDQTY, function GROUP
COUNT, function GROUP_MATCH COUNT, function GROUP, function GROUP_LIST, func-
tion IF, function ISNULL, function LANGUAGE, function LEN, function MD5, function
REGEX, function STRFTIME, function SET, function TIMEQUT

pbx_loopback.so
Provides: Loopback switch

pbx_realtime.so
Provides: Realtime switch

pbx_spool.so
Provides: Outgoing spool support

Standalone Functions

There is currently only one standalone function available. This function operates
identically to those in pbx_functions.so, but because it is standalone, it can be loaded
(or not) completely independently of the pbx functions. The function is:

func_callerid.so
Configuration file: not required

Provides: function CALLERID

312 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 313 Wednesday, August 31, 2005 5:02 PM

*

adsi.conf

The Analog Display Services Interface (ADSI) was designed to allow telephone com-
panies to deliver enhanced services across analog telephone circuits. In Asterisk, you
can use this file to send ADSI commands to compatible telephones. Please note that
the phone must be directly connected to a Zapata channel. ADSI messages cannot be
sent across a VoIP connection to a remote analog phone.

The res_adsi.so module is required for the Voicemail() application; however, the
adsi.conf file is not necessarily used. Detailed information about ADSI is not publicly
available, and documentation needs to be purchased from Telcordia.

adtranvofr.conf

Prior to Voice over IP, Voice over Frame Relay (VOFR) enjoyed brief fame as a means
of carrying packetized voice. Supporting VoFR through Adtran equipment is part of
the history of Asterisk.

This feature is no longer popular in the community, though, so it may be difficult to
find support for it.

agents.conf

This file allows you to create and manage agents for your call center. If you are using
the Queue() application, you may want to configure agents for the queue. The agents.
conf file is used to configure the AGENT channel driver.

The [general] section in agents.conf currently contains only one parameter. The
persistentagents=yes parameter tells Asterisk to save the status of agents who use
the callback feature of queues in the local Asterisk database. A logged-in remote
agent will then remain logged in across a reboot (unless removed from the database
through some other means).

The following parameters, which are specified in the [agents] section, are used to
define agents and the way the system interacts with them. The settings apply to all
agents, unless otherwise specified in the individual agent definitions:

ackcall
Accepts the arguments yes and no. If set to yes, requires a callback agent to
acknowledge login by pressing the # key after logging in. This works in conjunc-
tion with the AgentCallbackLogin() application.

autologoff
Accepts an argument (in seconds) defining how long an agent channel should
ring for before the agent is deemed unavailable and logged off.

agents.conf | 313

%

ﬁ

*@%

é ,appd.23268 Page 314 Wednesday, August 31, 2005 5:02 PM

group
Defines the groups to which an agent belongs, specified with integers. Specify
that an agent belongs to multiple groups by separating the integers with commas.

musiconhold => class
Accepts a Music on Hold class as its argument. This setting applies to all agents.

updatecdr
Accepts the arguments yes and no. Used to define whether the source channel in
the CDRs should be set to agent/agent_id to determine which agent generated
the calls.

wrapuptime
Accepts an argument (in milliseconds) specifying the amount of time to wait
after an agent has finished a call before that agent can be considered available to
answer another call.

The remaining parameters are also specified in the [agents] section, but they are glo-
bal to the chan_agent channel driver and thus cannot be defined on a per-agent basis:

createlink
Accepts the arguments yes and no. Inserts the name of the created recording in
the CDR user field.

custom_beep
Accepts a filename as its argument. Can be used to define a custom notification
tone to signal to an always-connected agent that there is an incoming call.

recordagentcalls
Accepts the arguments yes and no. Defines whether or not agent calls should be
recorded.

recordformat
Defines the format to record files in. The argument specified should be wav, gsm,
or wav49. The default recording format is wav.

savecallsin
Accepts a filesystem path as its argument. Allows you to override the default
path of /var/spool/asterisk/monitor/ with one of your choosing.

Since the storage of calls will require a large amount of hard drive
space, you will want to define a strategy to handle storing and manag-
ing these recordings.

This location should probably reside on a separate volume; one with
very high performance characteristics.

urlprefix
Accepts a string as its argument. The string can be formed as a URL and is
appended to the start of the text to be added to the name of the recording.

314 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 315 Wednesday, August 31, 2005 5:02 PM

The final parameter is used to define agents. As in the zapata.conf file, configuration
parameters are inherited from above the agent => definition. Agents are defined with
the following format:

agent => agent_id,agent_password,name

For example, we can define agent Happy Tempura with the agent ID 1000 and pass-
word 1234, as follows.

agent => 1000,1234,Happy Tempura

Be aware that an agents.conf file is a complement to the queue configuration pro-
cess. The most critical configuration file for your queues is queues.conf. You can con-
figure a very basic queue without agents.conf.

alarmreceiver.conf

The AlarmReceiver() application is not approved by Underwriter’s
Laboratory (UL) and should not be used as the primary or sole means
of receiving alarm messages or events. This application is not guaran-
teed to be reliable, so don’t depend on it unless you have extensively
tested it. Use of this application without extensive testing may place
your life and/or property at risk.

The alarmreceiver.conf file is used by the AlarmReceiver() application, which allows
Asterisk to accept alarms using the SIA (Ademco) Contact ID protocol. When a call
is received from an alarm panel, it should be directed to a context that calls the
AlarmReceiver () application. In turn, AlarmReceiver() will read the alarmreceiver.
conf configuration file and perform the configured actions as required. All parame-
ters are specified under the [general] heading.

The sample configuration file will contain the current settings for this application
and is very well documented.

alsa.conf

The alsa.conf file is used to configure Asterisk to use the Advanced Linux Sound
Architecture (ALSA) to provide access to a sound card, if desired. You can use this
file to configure the CONSOLE channel, which is most commonly used to create an
overhead paging system (although, as with any other channel, there are all kinds of
creative ways this can be used). Keep in mind that the usefulness of the ALSA chan-
nel by itself is limited due to its lack of a user interface.”

* Yes, we are aware that the user interface to the channel interface is the Asterisk CLI; however, this is not
usable as a telephone and therefore does not meet the criteria of an interface from the perspective of a tele-
phone user.

alsa.conf | 315

4~ ~4/o

é ,appd.23268 Page 316 Wednesday, August 31, 2005 5:02 PM

asterisk.conf

The asterisk.conf file defines the locations for the configuration files, the spool direc-
tory, and the modules, as well as a location to write log files to. The default settings
are recommended unless you understand the implications of changing them. The
asterisk.conf file is generated automatically when you run the make samples com-
mand, based on information it collects about your system. It will contain a
[directories] section such as the following;:

[directories]

astetcdir => /etc/asterisk

astmoddir => /usr/lib/asterisk/modules

astvarlibdir => /var/lib/asterisk

astagidir => /var/lib/asterisk/agi-bin

astspooldir => /var/spool/asterisk

astrundir => /var/run
astlogdir => /var/log/asterisk

Additionally, you can specify an [options] section, which will allow you to define
startup options (command-line switches) in the configuration file. The following
example shows the available options and the command-line switches that they effec-
tively enforce:

[options]

verbose=<value> ; starting verbosity level (-v)
debug=yes|no|<val> ; turn debugging on or off (or value in 1.2) (-d)
nofork=yes|no ; don't fork a background process (-f)
console=yes|no ; load the Asterisk console (-c)
highpriority=yes|no ; run with high priority (-p)

initcrypto=yes|no ; initialize crypto at start (-i)

nocolor=yes|no ; disable ANSI colors on the console (-n)
dumpcore=yes|no ; dump a core file on failure (-g)

quiet=yes|no ; run quietly (-q)

cache_record files=yes|no ; cache files recorded with Record() in an alternative
; directory in conjunction with record_cache_dir

record_cache_dir=<dir> ; directory in which to cache files recorded with
; Record () until completion
execincludes=yes|no ; enable support of #exec includes in configuration

; files (off by default)

cdr.conf

The cdr.conf file is used to enable call detail record logging to a database. Storing call
records is useful for all sorts of purposes, including billing, fraud prevention, QoS
evaluations, and more. cdr.conf contains some general parameters that are not spe-
cific to any particular database, but rather indicate how Asterisk should handle the

passing of information to the database. All options are under the [general] heading
of the cdr.conf file:

316 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 317 Wednesday, August 31, 2005 5:02 PM

*

batch
Accepts the arguments yes and no. Allows Asterisk to write data to a buffer instead
of writing to the database at the end of every call, to reduce load on the system.

Note that if the system dies unexpectedly when this option is set to
A yes, data loss may occur.

enable
Accepts the arguments yes and no. Specifies whether or not to use CDR logging. If
set to no, this will override any CDR module explicitly loaded. The default is yes.

safeshutdown
Accepts the arguments yes and no. Setting safeshutdown to yes will prevent
Asterisk from shutting down completely until the buffer is flushed and all infor-
mation is written to the database. If this parameter is set to no and you shut
down Asterisk with information still residing in the buffers, that information will
likely be lost.

scheduleronly
Accepts the arguments yes and no. If you are generating a massive volume of
CDRs on a system that is pushing them to a remote database, setting
scheduleronly to yes may be of benefit. Since the scheduler cannot start a new
task until the current one is finished, slow CDR writes may adversely affect other
processes needing the scheduler. This setting will instruct Asterisk to handle
CDR writes in a new thread, essentially assigning a dedicated scheduler to this
function. In normal operation, this would yield very little benefit.

size
Accepts an integer as its argument. Defines the number of CDRs to accumulate
in the buffer before writing to the database. The default is 100.

time
Accepts an integer (in seconds) as its argument. Sets the number of seconds
before Asterisk flushes the buffer and writes the CDRs to the database, regard-
less of the number of records in the buffer (as defined by size). The default is
300 seconds (5 minutes).

cdr_manager.conf

The cdr_manager.conf file simply contains a [general] heading and a single option,
enabled, which you can use to specify whether or not the Asterisk Manager API gen-
erates CDR events. If you want CDR events to be generated, you will need the fol-
lowing lines in your cdr_manager.conf file:

[general]
enabled=yes

cdr_manager.conf | 317

%

ﬁ

*@%

é ,appd.23268 Page 318 Wednesday, August 31, 2005 5:02 PM

The Manager API will then output CDR events containing the following fields:

Event: Cdr
AccountCode:
Source:
Destination:
DestinationContext:
CallerID:

Channel:
DestinationChannel:
LastApplication:
LastData:
StartTime:
AnswerTime:
EndTime:

Duration:
BillableSeconds:
Disposition:
AMAFlags:

UniquelD:
UserField:

cdr_odbc.conf

Asterisk can store CDR data in a local or remote database via the ODBC interface. The
cdr_odbc.conf file contains the information Asterisk needs to connect to the database.
The cdr_odbc.so module will attempt to load the cdr_odbc.conf file, and if information
is found for connecting to a database, the CDR data will be recorded there.

If you are going to use a database for storing CDR data, you will have to
select one of the many that are available. Asterisk does not like having
multiple CDR databases to connect to, so do not have extra cdr_.conf
files hanging about your Asterisk configuration directory.

cdr_pgsql.conf

Asterisk can store CDR data in a PostgreSQL database via the cdr_pgsql.so module.
When the module is loaded the necessary information will be read from the cdr_
pgsql.conf file, and Asterisk will connect to the PostgreSQL database to write and
store CDR data.

cdr_tds.conf

Asterisk can also store CDR data to a FreeTDS database (including MS SQL) with the
use of the cdr_tds.so module. The configuration file cdr_tds.conf is read once the mod-
ule is loaded. Upon a successful connection, CDR data will be written to the database.

318 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 319 Wednesday, August 31, 2005 5:02 PM

*

codecs.conf

Most codecs do not have any configurable parameters—they are what they are, and
that’s all they are.

Some codecs, however, are capable of behaving in different ways. This primarily
means that they can be optimized for a particular goal, such as cutting down on
latency, making best use of a network, or perhaps delivering high quality.

The codecs.conf file is fairly new in Asterisk, and as of this writing it allows configura-
tion of Speex parameters only. The settings are self-explanatory, as long as you are
familiar with the Speex protocol (see http://www.speex.org).

codecs.conf also allows you to configure Packet Loss Concealment (PLC). You need
to define a [plc] section and indicate genericplc => true. This will cause Asterisk to
attempt to interpolate any packets that are missed. (Enabling this functionality will
incur a small performance penalty.)

dnsmgr.conf

This file is used to configure whether Asterisk should perform DNS lookups on a reg-
ular basis, and how often those lookups should be performed.

dundi.conf

The DUND:I protocol is used to dynamically look up the VoIP address of a phone
number on a network, and to connect to that number. Unlike the ENUM standard,
DUNDI has no central authority. The dundi.conf file contains DUNDI extensions
used to control what is advertised; it also contains the peers to whom you will sub-
mit lookup requests and from whom you will accept lookup requests. The DUNDI
protocol was explored in Chapter 10.

enum.conf

The Electronic Numbering (ENUM) system is used in conjunction with the Inter-
net’s DNS system to map E.164 ITU standard (ordinary telephone) numbers to email
addresses, web sites, VoIP addresses, and the like. An ENUM number is created in
DNS by reversing the phone number, separating each digit with a period, and
appending el64.arpa (the primary DNS zone). If you want Asterisk to perform
ENUM lookups, configure the domain(s) in which to perform the lookups within the
enum.conf file. In addition to the official el64.arpa domain, you can have Asterisk
perform lookups in the publicly accessible e164.0rg domain.

enum.conf | 319

%

ﬁ

*@%

é ,appd.23268 Page 320 Wednesday, August 31, 2005 5:02 PM

*

extconfig.conf

Asterisk can write configuration data to and load configuration data from a database
using the external configuration engine (also known as realtime). This enables you to
map external configuration files (static mappings) to a database, allowing the infor-
mation to be retrieved from the database. It also allows you to map special runtime
entries that permit the dynamic creation and loading of objects, entities, peers, and
so on without a reload. These mappings are assigned and configured in the extconfig.
conf file, which is used by both res_odbc and realtime.

extensions.conf

At the center of every good universe is a dialplan. The extensions.conf file is the
means by which you tell Asterisk how you want calls to be handled. The dialplan
contains a list of instructions that, unlike traditional telephony systems, is entirely
customizable. The dialplan is so important that rather than defining it in this appen-
dix, we have dedicated all of Chapters 5 and 6, as well as Appendix B, to this topic.
Go forth, read, and enjoy!

features.conf

features.conf, the file formally known as parking.conf, contains configuration infor-
mation related to call parking and call transfers. Call parking configuration options
include:

* The extension to dial to park calls (parkext =>)

* The extension range to park calls in (parkpos =>)

* Which context to park calls in (context =>)

* How long a call can remain parked for before ringing the extension that parked
it (parkingtime =»)

* The sound file played to the parked caller when the call is removed from park-
ing (courtesytone =»)

* ADSI parking announcements (asdipark=yes|no)

In addition to the call parking options, in this file you can configure the button map-
pings for blind transfers, attended transfers, one-touch recording, disconnections,
and the pickup extension (which allows you to answer a remotely ringing extension).

festival.conf

The Festival text-to-speech engine allows Asterisk to read text files to the end user
with a computer-generated voice. Festival is covered in Chapter 10.

320 | AppendixD: Configuration Files

%

ﬁ

*@%

é ,appd.23268 Page 321 Wednesday, August 31, 2005 5:02 PM

iax.conf

Similar to sip.conf, the iax.conf file is where you configure options related to the TAX
protocol. Your end devices and service providers are also configured here. iax.conf is
covered in detail in Appendix A.

iaxprov.conf

This file is used by Asterisk to allow the system to upgrade the firmware on an IAXy
device.

indications.conf

The indications.conf file is used to tell Asterisk how to generate the various tele-
phone sounds common in different parts of the world—a dial tone in England
sounds very different from a dial tone in Canada, but your Asterisk system will be
pleased to make the sounds you want to hear. This file consists of a list of sounds a
telephone system might need to produce (dial tone, busy signals, and so forth), fol-
lowed by the frequencies used to generate those sounds.

By default (and without an indications.conf file), Asterisk will use the tones common
in North America. You can change the default country for your system by specifying
the two-letter country code in the [general] section. Supported country codes are
listed in the indications.conf.sample file located in /usr/src/asterisk/configs. If you have
the required information, your country can easily be added. Here’s what the configu-
ration for North America looks like:

[general]

country=us

5

[us]

description = United States / North America
ringcadance = 2000,4000

dial = 350+440

busy = 480+620/500,0/500

ring = 440+480/2000,0/4000

congestion = 480+620/250,0/250

callwaiting = 440/300,0/10000

dialrecall = !350+440/100,!0/100, !350+440/100,!10/100, ! 350+440/100, !0/100,350+440
record = 1400/500,0/15000

info = 1950/330,!1400/330, !1800/330,0

logger.conf

The logger.conf file specifies the type and verbosity of messages logged to the various
log files in the /var/log/asterisk/ directory. It has two sections, [general] and
[logfile].

logger.conf | 321

4~ ~4/o

é ,appd.23268 Page 322 Wednesday, August 31, 2005 5:02 PM

[general]

Settings under the [general] section are used to customize the output of the logs
(and can safely be left blank, as the defaults serve most people very well). However, if
you love to customize such things, read on.

You can define exactly how you want your timestamps to look through the use of the
dateformat parameter:

dateformat=%F %T
The Linux man page for strftime(3) lists all of the ways you can do this.

If you want to append your system’s hostname to the names of the log files, set
appendhostname=yes. This can be useful if you have a lot of systems delivering log files
to you.

If for some reason you do not want to log events from your queues, you can set
queue_log=no.

If generic events do not interest you, instruct Asterisk to omit them from the by set-
ting event_log=no.

[logfiles]

The [logfiles] section defines the types of information you wish to log. There are
multiple ranks for the various bits of information that will be logged, and it can be
desirable to separate log entries into different files. The general format for lines in the
[logfiles] section is filename => levels, where filename is the name of the file to save
the logged information to and levels are the types of information you wish to save.

Using console for the filename is a special exception that allows you to
control the type of information sent to the Asterisk console.

A sample [logfiles] section might look like this:

[logfiles]
console => notice,warning,error
messages => notice,warning,error
You can specify logging of the following types of information:

debug
Enabling debugging gives far more detailed output about what is happening in
the system. For example, with debugging enabled, you can see what DTMF
tones the users entered while accessing their voicemail boxes. Debugging infor-
mation should be logged only when you are actually debugging something, as it
will create massive log files very rapidly.

322 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 323 Wednesday, August 31, 2005 5:02 PM

verbose
When you connect to the Asterisk console and set a verbosity of 3 or higher, you’ll
see output on the console showing what Asterisk is doing. You can save this output
to a log file by adding a line such as verbose log => verbose to your logger.conf file.
Note that a high amount of verbosity can quickly eat up hard drive space.

notice
A notice is used to inform you of minor changes to the system, such as when a
peer changes state. It is normal to see these types of messages, and the events
they indicate generally have no adverse effects on the server.

warning
A warning happens when Asterisk attempts to do something and is unsuccess-
ful. These types of errors are usually not fatal, but they should be investigated,
especially if a lot of them are seen.

error
Errors are often related to Out of Memory errors. They generally indicate seri-
ous problems that may lead to Asterisk to crashing or freezing.

manager.conf

The Asterisk Manager interface is an API that external programs can use to commu-
nicate with and control Asterisk, much as you would do from the Asterisk console.

The Manager gives programs the ability to run commands and request
information from the Asterisk server. However, it is not very secure—
its authentication mechanism uses plain-text passwords, and all con-
nected terminals receive all events. The Asterisk Manager should be
used only on a trusted local area network, or locally on the box. The
permit and deny constructs allow you to restrict access to certain
extensions or subnets.

Many of the available graphical interfaces to Asterisk—such as the Flash Operator
Panel—use the Manager to pull data and determine the status of applications. The
manager.conf file defines the way programs authenticate with the Manager.

The Manager commands (which you can list by typing show manager commands at the
Asterisk console) have varying degrees of privilege. You can control the read and
write permissions for these commands with the use of the read and write options in
the manager.conf file.

Here’s a sample manager.conf file:

[general]

enabled = no

port = 5038
bindaddr = 0.0.0.0

manager.conf | 323

é ,appd.23268 Page 324 Wednesday, August 31, 2005 5:02 PM

[magma]

secret = welcome

deny:0.0.0.0/0.0.0.0

permit= 192.168.1.0/255.255.255.0

read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

meetme.conf

MeetMe is one of the more remarkable applications in Asterisk. This rather simple
concept has proven to be extremely expensive to implement in every other PBX, but
what seems like a big deal to them is simple to Asterisk. Whether by using a dedi-
cated server, or through the use of a service, Asterisk now delivers this functionality
as a standard application.

MeetMe conferences can be created either dynamically, with the d flag in the Dial()
application, or statically in the meetme.conf file. The format for creating conference
rooms is as follows:

conf => conference_number|[,pin][,administrator pin]
All conferences must be defined under the [rooms] section header.

[rooms]

conf => 4569

conf => 5060,54377017
conf => 3389,4242,1337
conf => 333,,2424

mgcp.conf

The Media Gateway Control Protocol (MGCP) has only primitive support in Aster-
isk. This is likely due to the fact that SIP has stolen the limelight from every other
VoIP protocol (except IAX, of course). Because of this, you should attempt to use
Asterisk’s MCGP channel in a production environment only if you are prepared to
perform extensive testing, are willing to pay to have features and patches imple-
mented within your time frames, and have in-house expertise with the protocol.

Having said that, we are not prepared to pronounce MGCP dead. SIP is not yet the
panacea it has been touted as, and MGCP has proven itself to be very useful in car-
rier backbone environments. Many believe MGCP will fill a niche or void that has
not yet been discovered, and we remain interested in it.

modem.conf

The modem.conf file is used by Asterisk to communicate with ISDN-BRI interfaces
through the ISDN4Linux driver. Since ISDN4Linux lacks many core ISDN features,

324 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 325 Wednesday, August 31, 2005 5:02 PM

*

it is not generally used. For BRI, the most popular add-on seems to be chan_capi,
available from http://www.junghanns.net.

musiconhold.conf

The musiconhold.conf file is used to configure different classes of music and their
locations for use in Music on Hold applications. Asterisk makes use of the mpgl23
application to play music to channels. You can specify arguments for a class, allow-
ing you to use an external application to stream music either locally or over a net-
work. Recently, native Music on Hold has been implemented, allowing Asterisk to
play music without any external processes. If the file is available in the same format
as the codec of the active channel, no transcoding will occur.

osp.conf

The Open Settlement Protocol (OSP) is officially documented in ETSI TS 101 321, a
European Telecommunication Standards Institute (ETSI) document that came out of
the work of the TIPHON working group. As far as we can tell, OSP is another
attempt to apply old-style telecom thinking to disruptive technologies.

o0ss.conf

The oss.conf file is used to configure Asterisk to use the Open Sound System (OSS)
driver to allow communications with the sound card via the CONSOLE channel.
Note that ALSA is now the preferred interface for the CONSOLE channel.

phone.conf

The phone.conf file is used to configure a Quicknet PhoneJACK card. The Phone-
JACK card seems to provide something like an FXS interface, in that you can plug an
analog telephone into it and pass calls through Asterisk.

privacy.conf

The privacy.conf file is used to control the maximum number of tries a user has to
enter his 10-digit telephone number in the PrivacyManager() application. The
PrivacyManager() application determines if a Caller ID is set for the incoming call. If
the user fails to enter his 10-digit number within the number of tries configured in
privacy.conf, the call is sent to priority n + 101 (if it exists). If the Caller ID is set, the
application does nothing.

privacy.conf | 325

ﬁ

*@%

é ,appd.23268 Page 326 Wednesday, August 31, 2005 5:02 PM

queues.conf

Asterisk provides basic call center functionality via its queueing system, but those
who are using it in more mission-critical environments often report that their solu-
tions required customization. You can do this customization in the queues.conf file.

The [general] section of queues.conf contains settings that will apply to all queues.
Currently, the only parameter that is supported is persistentmembers. If this parame-
ter is set to yes, a member that is added to the system via the AddQueueMember (') appli-
cation will be stored in the AstDB, and therefore retained across a restart.

You can define a queue by placing its name inside of square brackets ([]). Within
each queue, the following parameters are available:

musiconhold
This parameter allows you to configure which Music on Hold class (configured
in musiconhold.conf) to use for the queue.

announce
When a call is presented to a member of the queue, the prompt specified by
announce will be played to that agent before the caller is connected. This can be
useful for agents who are logged into more than one queue. You can specify
either the full path to the file, or a path relative to /var/lib/asterisk/sounds/.

strategy
Asterisk can use six strategies to distribute calls to agents:
ringall
The queue rings every available agent and connects the call to whichever
agent answers first (this is the default).

roundrobin
The queue cycles through the agents until it finds one who is available to
take the call. roundrobin does not take into account the workload of the
agents. Also, because roundrobin always starts with the first agent in the
queue, this strategy is suitable only in an environment where you want your
higher-ranked agents to handle all calls unless they are busy, in which case
the lower-ranked agents may get a call.

leastrecent
The call is presented to the agent who has not been presented a call for the
longest period of time.

fewestcalls
The call is presented to the agent who has received the least amount of calls.
This strategy does not take into account the actual agent workloads; it only
considers the number of calls they have taken (for example, an agent who
has had 3 calls that each lasted for 10 minutes will be preferred over an
agent who has had 5 calls each lasting 2 minutes).

326 | AppendixD: Configuration Files

- ad

é ,appd.23268 Page 327 Wednesday, August 31, 2005 5:02 PM

random
As its name suggests, the random strategy chooses an agent at random. In a
small call center, this strategy may prove to be the most fair.

rrmemory
The queue cycles through each agent, keeping track of which agent last
received a call (this strategy is known as round-robin memory). This ensures
that call presentation cycles through the agents as fairly as possible.

servicelevel
In a call center, the service level represents the maximum amount of time a caller
should ideally have to wait before being presented to an agent. For example, if
servicelevel is set to 60 and the service level percentage is 80%, that means
80% of the calls that came into the queue were presented to an agent in less than
60 seconds.

context
If a context is assigned to a queue, the caller will be able to press a single digit to
exit to the corresponding extension within the configured context, if it exists.
This action takes the caller out of the queue, which means that she will lose her
place in the queue—be aware of this when you use this feature.

timeout
The timeout value defines the maximum amount of time (in seconds) to let an
agent’s phone ring before deeming the agent unavailable and placing the call
back into the queue.

retry
When a timeout occurs, the retry value specifies how many seconds to wait
before presenting the call again to an available agent.

weight
The weight parameter assigns a rank to the queue. If calls are waiting in multiple
queues, those queues with the highest weight values will be presented to agents
first. When you are designing your queues, be aware that this strategy can pre-
vent a call in a lower-weighted queue from ever being answered. Always ensure
that calls in lower-weighted queues eventually get promoted to higher-weighted
queues to ensure that they don’t have to hold forever.

wrapuptime
You can configure this parameter to allow agents a few seconds of downtime
after completing a call before the queue presents them with another call.

maxlen
maxlen is the maximum number of calls that can be added to the queue before
the call goes to the next priority of the current extension.

announce-frequency
The announce-frequency value (defined in seconds) determines how often to
announce to the caller his place in the queue and estimated hold time.

queues.conf | 327

4~ ~4/o

é ,appd.23268 Page 328 Wednesday, August 31, 2005 5:02 PM

announce-holdtime
There are three possible values for this parameter: yes, no, and once. The
announce-holdtime parameter determines whether or not to include the esti-
mated hold time within the position announcement. If set to once, it will be
played to the caller only once.

monitor-format
This parameter accepts three possible values: wav, gsm, and wav49. By enabling
this option, you are telling Asterisk that you wish to record all completed calls in
the queue in the format specified. If this option is not specified, no calls will be
recorded.

monitor-join
The Monitor() application in Asterisk normally records either end of the conver-
sation in a separate file. Setting monitor-join to yes instructs Asterisk to merge
the files at the end of the call.

joinempty
This parameter accepts three values: yes, no, and strict. It allows you to deter-
mine whether callers can be added to a queue based on the status of the mem-
bers of the queue. The strict option will not allow callers to join the queue if all
members are unavailable.

leavewhenempty
This parameter determines whether you want your holding callers to be removed
from the queue when the conditions preventing a caller from joining exist (i.e.,
when all of your agents log out and go home).

eventwhencalled
Set eventwhencalled to yes if you wish to have queue events presented on the
Manager interface.

eventmemberstatusoff
Setting this parameter to no will generate extra information pertaining to each
queue member.

reportholdtime
If you set this parameter to yes, the amount of time the caller held before being
connected will be announced to the answering agent.

memberdelay
This parameter defines whether a delay will be inserted between the time when
the queue identifies a free agent and the time when the call is connected to that
agent.

member => member name

Members of a queue can be either channel types or agents. Any agents you list
here must be defined in the agents.conf file.

328 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 329 Wednesday, August 31, 2005 5:02 PM

*

res_odbc.conf

The purpose of the res_odbc.so module is to store configuration file information in a
database and retrieve that information from the database; however a reload is
required to make changes take effect. The res_odbc.conf file specifies how to access
the table within the database. The extconfig.conf file is used to determine how to
connect to the database.

rpt.conf

The rpt.conf file is used to configure Jim Dixon’s newest science project. Jim’s Radio
Repeater Application (app_rpt) allows Asterisk to communicate using VoIP via radio
repeater technology. This allows people to efficiently provide large-area coverage of
wireless networking and routing information to the Amateur Radio public through
their local high-speed Internet connections.

rtp.conf

The rtp.conf file controls the Real-time Transport Protocol (RTP) ports that Asterisk
uses to generate and receive RTP traffic. The RTP protocol is used by SIP, H.323,
MGCP, and possibly other protocols to carry media between endpoints.

The default rtp.conf file uses the RTP port range of 10,000 through 20,000. How-
ever, this is far more ports than you’re likely to need, and many network administra-
tors may not be comfortable opening up such a large range in their firewalls. You can
limit the RTP port range by changing the upper and lower bound limits within the
rtp.conf file.

For every bidirectional SIP call between two endpoints, five ports are generally used:
port 5060 for SIP signaling, one port for the data stream and one port for the Real-
Time Control Protocol (RTCP) in one direction, and an additional two ports for the
data stream and RTCP in the opposite direction.

UDP datagrams contain a 16-bit field for a Cyclic Redundancy Check (CRC), which
is used to verify the integrity of the datagram header and its data. It uses polynomial
division to create the 16-bit checksum from the 64-bit header. This value is then
placed into the 16-bit CRC field of the datagram, which the remote end can then use
to verify the integrity of the received datagram.

Setting rtpchecksums=no requests that the OS not do UDP checksum creating/check-

ing for the sockets used by RTP. If you add this option to the sample rip.conf file, it
will look like this:

[general]
rtpstart=10000
rtpend=20000
rtpchecksums=no

rtp.conf | 329

ﬁ

*@%

é ,appd.23268 Page 330 Wednesday, August 31, 2005 5:02 PM

*

sip.conf

The sip.conf file defines all the SIP protocol options for Asterisk. The authentication
for endpoints, such as SIP phones and service providers, is also configured in this
file. Asterisk uses the sip.conf file to determine which calls you are willing to accept
and where those calls should go in relation to your dialplan. Many SIP-related
options are configured in sip.conf, which was covered in depth in Appendix A.

sip_notify.conf

Asterisk has the ability to reboot a SIP phone remotely by sending it a specially for-
matted, manufacturer-specific NOTIFY message (defined in sip_notify.conf) consisting
of an event. The phone receives this event, which it interprets as a reboot request.
Other phones are supported, but as of this writing only phones by Polycom have
been verified to work with this method.

skinny.conf

If you wish to connect to phones using Cisco’s proprietary Skinny Client Control
Protocol (SCCP), you can use the skinny.conf file to define the parameters and chan-
nels that will use it. However, since the Asterisk community uses the SIP image on
their Cisco phones, you may find it difficult to find community support for this
channel type.

voicemail.conf

The voicemail.conf file controls the Asterisk voicemail system (called Comedian
Mail). It consists of three main sections. The first, called [general], sets the general
system-wide settings for the voicemail system. The second, called [zonemessages],
allows you to configure different voicemail zones, which are a collection of time and
time zone settings. The third and final section is where you create one or more
groups of voicemail boxes, each containing the mailbox definitions.

(For more information on adding voicemail capabilities to your dialplan, see Chapter 6.)

General Voicemail Settings

The [general] section of voicemail.conf contains a plethora of options that affect the
entire voicemail system:

format
Lists the codecs that should be used to save voicemail messages. Codecs should
be separated with the pipe character (]). The first format specified is the format
used when attaching a voicemail message to an email. Defaults to wav49|gsm|wav.

330 | AppendixD: Configuration Files

%

ﬁ

*@%

é ,appd.23268 Page 331 Wednesday, August 31, 2005 5:02 PM

serveremail
Provides the email address from which voicemail notifications should be sent.

attach
Specifies whether or not Asterisk should attach the voicemail sound file to the
voicemail notification email.

maxmessage
Sets the maximum length of a voicemail message, in seconds.

minmessage
Sets the minimum length of a voicemail message, in seconds.

maxgreet
Sets the maximum length of voicemail greetings, in seconds.

skipms
Specifies how many milliseconds to skip forward/back when the user skips for-
ward or backward during message playback.

maxsilence
Indicates how many seconds of silence to allow before ending the recording.

silencethreshold
Sets the silence threshold (what we consider “silence”—the lower the threshold
is, the more sensitive it is).

maxlogins
Sets the maximum allowed number of failed login attempts.

externnotify
Supplies the full path and filename of an external program to be executed when
a voicemail is left or delivered, or when a mailbox is checked.

externpass
Supplies the full path and filename of an external program to be executed when-
ever a voicemail password is changed.

directoryintro
If set, overrides the default introduction to the dial-by-name directory.

charset
Defines the character set for voicemail messages.
adsifdn
Specifies the ADSI feature descriptor number to download to.
adsisec
Sets the ADSI security lock code.
adsiver
Indicates the ADSI voicemail application version number.
pbxskip
Causes Asterisk not to add the string [PBX]: to the beginning of the subject line
of a voicemail notification email.

voicemail.conf | 331

4~ ~4/o

é ,appd.23268 Page 332 Wednesday, August 31, 2005 5:02 PM

fromstring:
Changes the From: string of voicemail notification email messages.

usedirectory
Permits a mailbox owner to select entries from the dial-by-name directory for
forwarding and/or composing new voicemail messages.

pagerfromstring
Changes the From: string of voicemail notification pager messages.
emailsubject
Specifies the email subject of voicemail notification email messages.
emailbody
Supplies the email body of voicemail notification email messages.
W N
X Please note that both the emailsubject and emailbody settings can use
.“:‘ B the fo‘llowin.g variables to provide more in-depth information about
* 9ls, the voicemail:
T e VM_NAME
VM DUR
* VM MSGNUM
* VM _MAILBOX
* VM CALLERID
¢ VM _CIDNUM
* VM_CIDNAME
* VM _DATE
mailcmd

Supplies the full path and filename of the program Asterisk should use to send
notification emails. This option is useful if you want to override the default email
program.

Voicemail Zones

As voicemail users may be located in different geographical locations, Asterisk pro-
vides a way to configure the time zone and the way the time is announced for differ-
ent callers. Each unique combination is known as a voicemail zone. You configure
your voicemail zones in the [zonemessages] section of voicemail.conf. Later, you can
assign your voicemail boxes to use the settings for one of these zones.

Each voicemail zone definition consists of a line with the following syntax:
zonename=timezone | time format

The zonename is an arbitrary name used to identify the zone. The timezone argument
is the name of a system time zone, as found in /usr/share/zoneinfo. The time format
argument specifies how times should be announced by the voicemail system. The
time_format argument is made up of the following elements:

332 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 333 Wednesday, August 31, 2005 5:02 PM

*

'filename'
The filename of a sound file to play (single quotes around the filename are
required)
${VAR}
Variable substitution
Aora
The day of the week (Saturday, Sunday, etc.)
Borborh
The name of the month (January, February, etc.)
dore
The numeric day of the month (first, second... thirty-first)

Y
The year
Torl
The hour, in 12-hour format
H
The hour, in 24-hour format—single-digit hours are preceded by “oh”
k
The hour, in 24-hour format—single-digit hours are not preceded by “oh”
M
The minute
Porp
A.M. or .P.M.
Q
“today”, “yesterday,” or ABdY (note: not standard strftime value)
q
“” (for today), “yesterday”, weekday, or ABAY (note: not standard strftime value)
R

24-hour time, including minutes

For example, the following example sets up two different voicemail zones, one for
the Central time zone in 12-hour format, and a second in the Mountain time zone, in
24-hour format:

[zonemessages]

central=America/Chicago|'vm-received' Q 'digits/at’' IMp
mountain24=America/Denver|'vm-received' q 'digits/at' H 'digits/hundred' M 'hours’

Defining Voicemail Contexts and Mailboxes

Now that the system-wide settings and voicemail zones have been set, you can define
your voicemail contexts and individual mailboxes.

voicemail.conf | 333

%

ﬁ

*@%

é ,appd.23268 Page 334 Wednesday, August 31, 2005 5:02 PM

Voicemail contexts are used to separate out different groups of voicemail users. For
example, if you are using Asterisk to host voicemail for more than one company, you
should place each company’s mailboxes in different voicemail contexts, to keep them
separate. You might also use voicemail contexts to create per-department dial-by-
name directories.

To define a new voicemail context, simply put the context name inside of square

brackets, like this:
[default]

Inside a voicemail context, each mailbox definition takes the following syntax:
mailbox=password,name[,emaill,pager email[,options]]]

The mailbox argument is the mailbox number.

The password argument is the code the mailbox owner must enter to access his voice-
mail. If the password is preceded by a minus sign (-), the password may not be
changed by the mailbox owner.

The email and pager email arguments are email addresses where voicemail notifica-
tions will be sent. These may be left blank if you don’t want to send voicemail notifi-
cations via email.

The options argument is a pipe-separated list of voicemail options that may be speci-
fied for the mailbox. (These options may also be set globally by placing them in the
[general] section.) Valid voicemail options include:

tz
Sets the voicemail zone from the [zonemessages] section above. This option is
irrelevant if envelope is set to no.

attach
Attaches the voicemail to the notification email (but not to the pager email). May
be set to either yes or no.
saycid
Says the Caller ID information before the message.
cidinternalcontexts
Sets the internal context for name playback instead of extension digits when say-
ing the Caller ID information.
sayduration
Turns on/off the duration information before the message. Defaults to on.
saydurationm
Specifies the minimum duration to say when sayduration is on. Default is 2
minutes.
dialout
Specifies the context to dial out from (by choosing option 4 from the advanced
menu). If not specified, dialing out from the voicemail system will not be permitted.

334 | AppendixD: Configuration Files

4~ ~4/o

é ,appd.23268 Page 335 Wednesday, August 31, 2005 5:02 PM

sendvoicemail
Specifies the context to send voicemail from (by choosing option 5 from the
advanced menu). If not specified, sending messages from within the voicemail
system will not be permitted.

callback
Specifies the context to call back from. If not specified, calling the sender back
from within the voicemail system will not be permitted.

Teview
Allows senders to review/rerecord their messages before saving them. Defaults to
off.

operator
Allows senders to hit 0 before, after, or while leaving a voicemail message to
reach an operator. Defaults to off.

envelope
Turns on/off envelope playback before message playback. Defaults to on. This
does not affect option 3,3 from the advanced options menu.

delete
Deletes voicemails from the server after notification is sent. This option may be
set only on a per-mailbox basis; it is intended for use with users who wish to
receive their voicemail messages only by email.

nextaftercmd
Skips to the next message after the user hits 7 or 9 to delete or save the current
message. This can be set only globally at this time, not on a per-mailbox basis.

forcename
Forces new users to record their names. A new user is determined by the pass-
word being the same as the mailbox number. Defaults to no.

forcegreetings
Forces new users to record greetings. A new user is determined by the password
being the same as the mailbox number. Defaults to no.

hidefromdir
Hides the mailbox from the dial-by-name directory. Defaults to no.

You can specify multiple options by separating them with the pipe character, as
shown in the definitions for mailboxes 9855 and 6522 below.

Here are some sample mailbox definitions:

[default]
; regular mailbox with email notification
101 => 4242,Example Mailbox,somebody@asteriskdocs.org

; more advanced mailbox with email and pager notification and a couple of
; special options

102 => 9855,Another User,another@asteriskdocs.org,pager@asteriskdocs.org,
attach=no|tz=central

voicemail.conf | 335

4~ ~4/o

é ,appd.23268 Page 336 Wednesday, August 31, 2005 5:02 PM

; a mailbox with no email notification and lots of extra options
103 => 6522,John Q. Public,,,tz=central|attach=yes|saycid=yes]|
dialout=fromvm|callback=fromvm|review=yes

vpb.conf

This file is used to configure Voicetronix cards with Asterisk.

zapata.conf

The zapata.conf file is used to define the relationship between Asterisk and the Zap-
tel driver. Because zapata.conf is specific to Asterisk, it is located with the other
Asterisk configuration files in /etc/asterisk/. As with zaptel.conf, the zapata.conf file
contains a multitude of choices reflecting the multitude of hardware it supports, and
we won'’t try to list all of the options here. In this book we’ve covered only the ana-
log interfaces to the Zaptel driver, as described in Chapter 3.

zaptel.conf

The zaptel.conf file is not located with the other Asterisk .conf files—the Zaptel
driver is available to any application that can make use of it, so it makes more sense
to store it in a non-Asterisk-specific directory (fetc/). zaptel.conf is parsed by the zicfg
program to configure the TDM hardware elements in your system. You configure
three main elements in the zaptel.conf file:

* A way of identifying the interfaces on the card within the dialplan
* The type of signaling the interface requires

* The tone language associated with a particular interface, as found in zonedata.c

Be very careful not to plug your FXS module into a telephone line. The
= voltage associated with the phone line, especially during an incoming

call, will be much too high for the module to handle and may perma-
nently damage it, rendering it useless!

Within the zaptel.conf file, we define the type of signaling that the channel is going to
use. We also define which channels to load. The options in the configuration file are the
information that will be used to configure the channels with the ztcfg command.

The actual parameters available in the zaptel.conf file are quite extensive, as a wide
variety of PSTN interfaces make use of the Zaptel telephony engine. Also, as this
technology is rapidly evolving, anything we write now may not be accurate by the
time you read it. Consequently, we won'’t try to list all of the options here.

In this book, we have focused on the Zaptel analog interfaces as provided by the
Digium TDM400P card (see Chapter 3).

336 | AppendixD: Configuration Files

- ad

